Integer Optimization Problem Set 1

To be discussed on Feb. 27.

1. An employment agency wants to find a job for a set of workers, W. The set of available jobs is E. The agency knows whether a worker $i \in W$ is qualified for job $j \in E$. Describe an integer program to find the maximum number of workers being employed in jobs for which they are qualified. Hint: Use variables $x_{i, j} \in\{0,1\}$ indicating whether worker i was assigned job j.
Now, some companies offering jobs, have a maximum number of new hires. For example, the subset $S \subseteq E$ of jobs is offered by IBN. IBN can, for budget reasons, only hire 5 new people. Incorporate these additional constraints into your integer program.
2. Recall that for $X \subseteq \mathbb{R}^{n}$ the convex hull of X is

$$
\operatorname{conv}(X)=\left\{\sum_{i=1}^{t} \mu_{i} x_{i}: t \in \mathbb{N}_{+}, \mu_{i} \geqslant 0, x_{i} \in X, \sum_{i=1}^{t} \mu_{i}=1\right\}
$$

Show that, for $A, B \subseteq \mathbb{R}^{n}$, one has $\operatorname{conv}(A \cup B)=\operatorname{conv}(\operatorname{conv}(A) \cup \operatorname{conv}(B))$.
3. Recall that for $X \subseteq \mathbb{R}^{n}, X_{I}=\operatorname{conv}\left(X \cap \mathbb{Z}^{n}\right)$.

Let $\mathscr{C}=\operatorname{cone}\left(\left\{c_{1}, \ldots, c_{r}\right\}\right)$ with $c_{i} \in \mathbb{Z}^{n}$ for $1 \leqslant i \leqslant r$. Show that $\mathscr{C}_{I}=\mathscr{C}$.
Hint: Write each element of \mathscr{C} as a convex combination of integer multiples of the c_{i} and 0.
4. In this exercise, you can assume that each cone, cone (X) with $X \subseteq \mathbb{R}^{n}$ finite can be written as $P(A, 0)=\left\{x \in \mathbb{R}^{n}: A x \leqslant 0\right\}$ for some matrix A and vice versa.
Prove the Minkowski-Weyl theorem: A set $P \subseteq \mathbb{R}^{n}$ is a polyhedron if and only if there exist finite sets $X, Y \subseteq \mathbb{R}^{n}$ with $P=X+Y$.
Hint: Let $P=P(A, b)$. Consider the polyhedral cone $\mathscr{C}=\left\{\binom{x}{\lambda} \in \mathbb{R}^{n+1}: A x \leqslant \lambda b, \lambda \geqslant 0\right\}$.
5. Let $P=\left\{x \in \mathbb{R}^{2}:(1, \alpha)^{T} x \leqslant 0\right\}$. If $\alpha \notin \mathbb{Q}$, then P_{I} is not a polyhedron.
6. Consider the triangle $T \subseteq \mathbb{R}^{2}$ with vertices $(0,0),(a, 0),(a, \gamma)$ where $a \in \mathbb{N}$ and $\gamma \in \mathbb{R} \geqslant 0$. Show that there exists a set $S \subseteq\left(T \cap \mathbb{Z}^{2}\right)$ with $|S|=O(\log a)$ such that $T_{I}=\operatorname{conv}(S)$ holds.

