Discrete Optimization 2023 (EPFL): Problem set of week 2

February 23, 2023

We say that a hyperplane $H=\{x|<x, a\rangle=b\}$ separates a point p from a set W, if $<p, a \gg b$ while $<x, a><b$ for every $x \in W$.

1. Find a point that is inside the tetrahedron whose facets are:
$\{x+y+z=1\}, \quad\{2 x-3 y-z=2\}, \quad\{x-3 y+z=4\}$, and $\{2 x-y+3 z=1\}$.
2. Find a hyperplane separating the point $(1,2,3)$ from the unit ball $B=$ $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$ in \mathbb{R}^{3}.
3. Let B be the cube $B=\left\{\left(x_{1}, \ldots, x_{6}\right) \mid 0 \leq x_{1}, \ldots, x_{6} \leq 1\right\}$ in \mathbb{R}^{6}. Find a hyperplane passing through the point $(1,0,1,0,1,0)$ that does not contain any other point of B.
4. Let p_{1}, \ldots, p_{m} be m points in \mathbb{R}^{n}. Prove that the point $q=\frac{1}{m}\left(p_{1}+\right.$ $\ldots,+p_{m}$) cannot be separated by a hyperplane from the points p_{1}, \ldots, p_{m}.
