Discrete Optimization 2023 (EPFL): Problem set of week 2

February 23, 2023

We say that a hyperplane $H = \{x \mid < x, a \ge b\}$ separates a point p from a set W, if < p, a >> b while < x, a >< b for every $x \in W$.

- 1. Find a point that is inside the tetrahedron whose facets are: $\{x + y + z = 1\}, \{2x 3y z = 2\}, \{x 3y + z = 4\}, \text{ and } \{2x y + 3z = 1\}.$
- 2. Find a hyperplane separating the point (1, 2, 3) from the unit ball $B = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 1\}$ in \mathbb{R}^3 .
- 3. Let B be the cube $B = \{(x_1, \ldots, x_6) \mid 0 \le x_1, \ldots, x_6 \le 1\}$ in \mathbb{R}^6 . Find a hyperplane passing through the point (1, 0, 1, 0, 1, 0) that does not contain any other point of B.
- 4. Let p_1, \ldots, p_m be *m* points in \mathbb{R}^n . Prove that the point $q = \frac{1}{m}(p_1 + \ldots, +p_m)$ cannot be separated by a hyperplane from the points p_1, \ldots, p_m .