Discrete Optimization 2023 Problem set week 1 - Solutions

February 21, 2023

1. Show that the three medians in a triangle with vertices v_{1}, v_{2}, v_{3} meet at the point $\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)$.
Solution: The mid point of the edge $v_{1} v_{2}$ is $\frac{v_{1}+v_{2}}{2}$. Notice that $\frac{1}{3}\left(v_{1}+v_{2}+\right.$ $\left.v_{3}\right)=\frac{1}{3} v_{3}+\frac{2}{3}\left(\frac{v_{1}+v_{2}}{2}\right)$. Therefore, the point $\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)$ lies on the median going from v_{3}. By symmetry it also lies on the other two medians.
2. Find the hyperplane passing through $(1,1,1)$ that is perpendicular to both hyperplanes $\{x+2 y+z=2\}$ and $\{x-y-3 z=8\}$ in \mathbb{R}^{3}.
Solution: In \mathbb{R}^{3} a hyperplane equation is given by $a x+b y+c z=d$ where $a, b, c, d \in \mathbb{R}$. We are looking for a triple (a, b, c) that is perpendicular to both $(1,2,1)$ and $(1,-1,-3)$. We calculate that a vector perpendicular to the both of them is $(5,-4,3)$ or multiples of it since it satisfies both $(5,-4,3)^{T} \cdot(1,2,1)=0$ and $(5,-4,3)^{T} \cdot(1,-1,-3)=0$. Furthermore, $(1,1,1)$ needs to be on the hyperplane by assumptions. Thus, we obtain $d=5 \cdot 1-4 \cdot 1+3 \cdot 1=4$. Hence, the hyperplane we searched for is $\{5 x-4 y+3 z=4\}$.
3. Find the closest point to $(3,5,4)$ on the hyperplane $\{2 x+4 y-z=3\}$ in \mathbb{R}^{3}
Solution: The geometric intuition of finding such point is, going along the normal vector of the hyperplane with start from our given point, until we reach the hyperplane.
There are 2 ways to solve this problem:
(1) Let the point be $(a, b, c) \in \mathbb{R}^{3}$. We want the difference to be perpendicular to the hyperplane, which is equivalent to say that the difference is parallel to the normal vector of the hyperplane, that is,

$$
(a, b, c)-(3,5,4) \quad \text { is a multiple of } \quad(2,4,-1)
$$

We also need the point to be on the hyperplane, i.e., $2 a+4 b-c=3$.
Solve those equations to get $a=\frac{25}{21}, b=\frac{29}{21}, c=\frac{103}{21}$.
(2) The point we are looking for can be represented as $(3,5,4)+t(2,4,-1)$. We also require that it's on the hyperplane, that is,

$$
2(3+2 t)+4(5+4 t)-(4-t)=3 \Longrightarrow t=-\frac{19}{21}
$$

Bring it back to the expression will give us the same solution as the 1st method.
4. Find the distance of the origin \mathbb{O} to the line of the intersection of the hyperplanes $\{x+y+z=1\}$ and $\{2 x-y+3 z=1\}$ in \mathbb{R}^{3}.

Solution:

(1) First we compute the direction of the direction of the intersection line of these 2 hyperplanes. Since it is in the direction perpendicular to both $(1,1,1)$ and $(2,-1,3)$, we may take $(4,-1,-3)$ or any constant multiple of it.
(2) Then we find a point on the line of intersection of these 2 hyperplanes (take any point as you want), say ($1, \frac{1}{4},-\frac{1}{4}$).
(3) The point on the plane with the shortest distance to the origin is of the form $\left(1, \frac{1}{4},-\frac{1}{4}\right)+t(4,-1,-3)$, for some $t \in \mathbb{R}$. And this point (as a vector) should be perpendicular to the direction of the line, i.e., to $(4,-1,-3)$. Solve this to get $t=-\frac{9}{52}$.
(4) The distance will then be the distance from the origin to the point $\left(\frac{4}{13}, \frac{11}{26}, \frac{7}{26}\right)$, which is $\frac{3 \sqrt{26}}{26}$.

