
Fine-Grained and Parameterized Complexity
Notes for April 22nd, 2021

1 Problems equivalent to APSP

Definition 1 (All-Pairs Shortest Paths (APSP)). Given a directed n-node graph G =
(V,E) with integer edge weights w : E → {−M, . . . ,M} and with no negative cycles, find
for every pair of nodes u, v ∈ V the length d(u, v) of the shortest path from u to v.

Floyd-Warshall algorithm solves APSP in O(n3) time (do you remember it from un-
dergrad algorithms class?). The best known APSP algorithm up to date is due to Ryan
Williams and runs in O(n3/2α

√
logn), for some constant α > 0.

It is conjectured that APSP cannot be solved in truly subcubic time. To make the
hypothesis precise, we need to account for the range of edge weights M , because for too
small weights the problem can be solved faster (we will see that later in the course) and
for too large weights (e.g., exponential in n) the hypothesis is trivially true.

Hypothesis 1 (APSP Hypothesis). For every ε > 0 there exists c such that APSP with
weights in {−nc, . . . , nc} cannot be solved in O(n3−ε) time.

In this lecture we will see that the following problems are subcubic equivalent to APSP,
meaning that if one of these problems has a truly subcubic algorithm, then all of them
have.

Definition 2 ((min,+)-product). Given two n× n matrices A, B with integer entries in
{−M, . . . ,M}, compute their (min,+)-product A ?B, that is the n× n matrix such that

(A ? B)[i][j] = min
k∈[n]

(A[i][k] +B[k][j]).

Definition 3 (Negative Triangle). Given a directed n-node graph G = (V,E) with integer
edge weights w : E → {−M, . . . ,M}, decide if there exists a 3-cycle v1 → v2 → v3 → v1
such that w(v1, v2) + w(v2, v3) + w(v3, v1) < 0.

Definition 4 (All-Pairs Negative Triangle). Given a tripartite graph G = (V1∪V2∪V3, E)
with integer edge weights w : E → {−M, . . . ,M}, determine for every pair of nodes
v1 ∈ V1, v2 ∈ V2 if there exists a 3-cycle v1 → v2 → v3 → v1 such that w(v1, v2) +
w(v2, v3) + w(v3, v1) < 0.

Definition 5 (Radius). Given a directed n-node graph G = (V,E) with integer edge
weights w : E → {−M, . . . ,M} and with no negative cycles, compute

min
u∈V

max
v∈V

d(u, v).

In other words, find the smallest number r such that there exists vertex u such that every
vertex is within distance at most r from u.

Remark. There are more problems known to be subcubic equivalent to APSP, e.g.,
Shortest Cycle, Second Shortest Path, Metricity, Replacement Paths. The fact that for
none of them we have found a subcubic algorithm makes the APSP Hypothesis more
believable.

1

Fine-Grained and Parameterized Complexity
Notes for April 22nd, 2021

2 APSP and (min,+)-product have equal running times

Theorem 1. If APSP is in T (n) time, then (min,+)-product is in O(T (n)) time.

Proof. Build a tripartite graph with vertex set U ∪ V ∪ W , U = {u1, . . . un}, V =
{v1, . . . vn}, W = {w1, . . . wn}. For every i, j add edge (ui, vj) with weight A[i][j] and
edge vi, wj with weight B[i][j]. Observe that (A ? B)[i][j] = d(ui, wj).

Theorem 2. If (min,+)-product is in T (n) time, then APSP is in O(T (n) log n) time.

Proof. Repeated squaring of the (weighted) adjacency matrix with added zero-weight
loops.

Actually one can prove a stronger statement, without the log n overhead. We will see
that later in the course.

3 (min,+)-product is equivalent to Negative Triangle

We will show a cycle of three reductions involving (min,+)-product, Negative Triangle,
and All-Pairs Negative Triangle, proving that the three problems are subcubic equivalent.

Theorem 3. If (min,+)-product is in T (n), then Negative Triangle is in O(T (n)).

Proof. Let A be the weighted adjacency matrix, that is A[i][j] = w(i, j) if (i, j) ∈ E and
A[i][j] = ∞ otherwise. Compute A ? A, then check if there exists a pair i, j such that
A[i][j] + (A ? A)[j][i] < 0.

Theorem 4. If All-Pairs Negative Triangle is in T (n) time, then (min,+)-product is in
O(T (n) logM) time.

Proof. We build a tripartite graph with the vertex set I∪J∪K, where each of I, J,K is an
independent copy of {1, 2, . . . , n}. For every pair (i, k) ∈ I ×K we put w(i, k) = A[i][k],
and for every pair (k, j) ∈ K × J we put w(k, j) = B[k][j]. In order to compute A?B we
will find, for each pair (i, j) ∈ I × J , the smallest value −w(j, i) such that there exists a
negative triangle (i, j, k), i.e. w(i, k) +w(k, j) < −w(j, i). We will binary search for these
values, simultaneously for all pairs (i, j).

First we initialize lower and upper bounds: l(i, j) = −2M , h(i, j) = 2M . Then, for
log(4M) steps, we (1) set, for all i, j, w(j, i) = −(l(i, j)+h(i, j))/2; (2) compute All-Pairs
Negative Triangle; and (3) set, for all i, j, h(i, j) = −w(j, i) if i, j belongs to a negative
triangle, and l(i, j) = −w(j, i) otherwise.

Theorem 5. If Negative Triangle is in O(n3−ε′) time, then All-Pairs Negative Triangle
is in O(n3−ε) time.

Proof. First, note that if we can detect if there is a negative triangle (one bit on output)
in O(nc) time, then we can also find a negative triangle (three integers on output) in
O(nc) time. Indeed, we split the vertex set into four roughly equal-sized parts, and we
run negative triangle detection on four graphs, each composed of different three out of
the four parts. If there was a negative triangle in the initial graph, then there must be a

2

Fine-Grained and Parameterized Complexity
Notes for April 22nd, 2021

negative triangle in at least one of those four graphs, and we recurse on one such graph.
The running time is O(nc + (3

4
n)c + (9

16
n)c + . . .) = O(nc).

To solve All-Pairs Negative Triangle, we split each part of the tripartite input graph
into n2/3 groups of n1/3 nodes each. For each triple of groups, as long as there is a negative
triangle (i, j, k) in the graph induced by the three groups, we remove edge (i, j), and
repeat. Hence, for a triple that yields t negative triangles, we run the negative triangle
finding algorithm t + 1 times, each time on an n1/3-node graph. It is important that
whenever we remove an edge, it remains removed also for all other triples that we will
examine later and that could possibly include that edge.

The total number of triples is (n2/3)3 = n2, and the total number of negative triangles
reported is at most n2 (at most one for each edge of the input graph). Each call to the
negative triangle finding algorithm takes time O((n1/3)3−ε

′
) = O(n1−ε′/3). Hence, we solve

All-Pairs Negative Triangle in O(n3−ε′/3) time.

4 Radius

Usually, when we want to show that a problem is subcubic equivalent to APSP, it is
convenient to reduce Negative Triangle (which is very simple and requires only one bit of
output) to the problem, and to reduce the problem to APSP (which has a lot of expressive
power).

Theorem 6. If APSP is in T (n) time, then Radius is in O(T (n)) time.

Proof. Trivial, just use the definition.

Theorem 7. If Radius is in T (n) time, then Negative Triangle is in O(T (n)) time.

Proof. One-slide proof borrowed from Karl Bringmann’s presentation available at https:
//conferences.mpi-inf.mpg.de/adfocs-18/karl/2-APSP.pdf:

Negative Triangle to Radius

Negative Triangle instance:

graph ! with " nodes,

edge-weights in {−"%, … , "%}

Radius instance:

graph) with O(") nodes,

edge-weights in {0, … , .("%)}

/ ∶= 3"%

3 4 5 6

78 79

:;
<=

1) Make four layers with " nodes

2) For any edge (7, :): Add 78, :; ,
7;, := , 7= , :9 with weight / +?(7, :)

(7, :, <) has weight @

⇔ path has length 3/ +@

→ ∃78, :;, <= , 79-path of length ≤ 3/ − 1?3) Add edges of weight 3/ − 1 from

any 78 to all nodes except 79

Radius: min
I
max
L
M(N, O) Radius of) is ≤ 3/ − 1 iff

there is a negative triangle in !

Claim:

7

:

?(7, :)

<

3

https://conferences.mpi-inf.mpg.de/adfocs-18/karl/2-APSP.pdf
https://conferences.mpi-inf.mpg.de/adfocs-18/karl/2-APSP.pdf

Fine-Grained and Parameterized Complexity
Notes for April 22nd, 2021

5 Summary

We saw the following reductions:

APSP (min,+)-product
All-Pairs

Negative∆
Negative∆

Radius

4

	Problems equivalent to APSP
	APSP and (min,+)-product have equal running times
	(min,+)-product is equivalent to Negative Triangle
	Radius
	Summary

