Metric Embeddings
 Problem Set 3 Exercises on Measure Concentration

Friedrich Eisenbrand

October 13, 2022

In the following you can assume that sampling a point on the unit sphere $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}$ at random can be done by sampling $x \in \mathbb{R}^{n}$ from the standard n-dimensional Gaussian with density function $(1 / 2 \pi)^{n / 2} \exp \left(-\|x\|_{2}^{2} / 2\right)$ and returning $x /\|x\|_{2}$. This corresponds to sampling the n components of the vector x from the standard Gaussian with mean 0 and variance 1 . You will need the theorem that was stated in today's lecture which said that the standard n-dimensional Gaussian is sharply concentrated around the sphere of radius \sqrt{n}, i.e., the probability that $\|x\|$ is not in the inter-$\operatorname{val}[(1-\varepsilon) \sqrt{n},(1+\varepsilon) \sqrt{n}]$ is bounded by $e^{c \cdot n \cdot \varepsilon^{2}}$.

1. Let $x, y \in S^{n-1}$ be two random points. What is the expected angle between the two?
2. This series of questions shall lead us to a proof that almost all measure of $S^{n-1}, 90 \%$ say, is concentrated around the equator $E=\left\{x \in \mathbb{R}^{n}: x_{1}=0\right\}$. More precisely we show that 90% of the measure is within the slab $L=\left\{x \in \mathbb{R}^{n}:-C / \sqrt{n} \leqslant x_{1} \leqslant C / \sqrt{n}\right\}$ where C is some constant.
i) What is the diameter of S^{n-1} ? It seems that $L \cap S^{n-1}$ "looks" like a small portion of S^{n-1}.
ii) Assume for now (wishful thinking that is of course wrong!) that a random $x \in \mathbb{R}^{n}$ from the n-dimensional standard Gaussian has length $\|x\|=\sqrt{n}$. The distance $d(x)$ of $x /\|x\|$ to the equator is thus x_{1} / \sqrt{n}. Show that there exists a constant a such that

$$
P[d(x)>\lambda / \sqrt{n}] \leqslant \exp \left(-a \cdot \lambda^{2}\right)
$$

3. Use our measure concentration for the Gaussian measure to show that there exists a constant C such that 90% of the measure of S^{n-1} lies in the slab L.
4. Derive a good upper bound for the event that a random $x \in S^{n-1}$ satisfies $d(x) \geqslant \lambda / \sqrt{n}$.
