Metric Embeddings Problem Set 3 Exercises on Measure Concentration

Friedrich Eisenbrand

October 13, 2022

In the following you can assume that sampling a point on the *unit sphere* $S^{n-1} = \{x \in \mathbb{R}^n : \|x\|_2 = 1\}$ at random can be done by sampling $x \in \mathbb{R}^n$ from the *standard n-dimensional Gaussian* with density function $(1/2\pi)^{n/2} \exp(-\|x\|_2^2/2)$ and returning $x/\|x\|_2$. This corresponds to sampling the *n* components of the vector *x* from the standard Gaussian with mean 0 and variance 1. You will need the theorem that was stated in today's lecture which said that the standard *n*-dimensional Gaussian is sharply concentrated around the sphere of radius \sqrt{n} , i.e., the probability that $\|x\|$ is not in the interval $[(1 - \varepsilon)\sqrt{n}, (1 + \varepsilon)\sqrt{n}]$ is bounded by $e^{c \cdot n \cdot \varepsilon^2}$.

- 1. Let $x, y \in S^{n-1}$ be two random points. What is the expected angle between the two?
- 2. This series of questions shall lead us to a proof that almost all measure of S^{n-1} , 90% say, is concentrated around the *equator* $E = \{x \in \mathbb{R}^n : x_1 = 0\}$. More precisely we show that 90% of the measure is within the slab $L = \{x \in \mathbb{R}^n : -C/\sqrt{n} \le x_1 \le C/\sqrt{n}\}$ where *C* is some constant.
 - i) What is the diameter of S^{n-1} ? It seems that $L \cap S^{n-1}$ "looks" like a small portion of S^{n-1} .
 - ii) Assume for now (wishful thinking that is of course wrong!) that a random $x \in \mathbb{R}^n$ from the *n*-dimensional standard Gaussian has length $||x|| = \sqrt{n}$. The distance d(x) of x/||x|| to the equator is thus x_1/\sqrt{n} . Show that there exists a constant *a* such that

$$P\left[d(x) > \lambda/\sqrt{n}\right] \leq \exp(-a \cdot \lambda^2).$$

- 3. Use our measure concentration for the Gaussian measure to show that there exists a constant C such that 90% of the measure of S^{n-1} lies in the slab L.
- 4. Derive a good upper bound for the event that a random $x \in S^{n-1}$ satisfies $d(x) \ge \lambda/\sqrt{n}$.