Metric Embeddings Problem Set 2

October 7, 2022

These problems are discussed during the exercise session on Friday, October 7.

- 1) a) Let $K \subseteq \mathbb{R}^n$ be a centrally symmetric (around 0) convex, compact and full-dimensional set. Show that $||v||_K = \max\{t: t \cdot v \in K\}^{-1}$ is a norm. This norm is called ℓ_K .
 - b) Show that, if *K* is in addition a polytope described as $K = \{x \in \mathbb{R}^n : -1 \leq Ax \leq 1\}$, with $A \in \mathbb{R}^{m \times n}\}$, then ℓ_K embeds isometrically into ℓ_{∞}^m .
- 2) A finite metric (X, d) is called a metric of *negative type*, if (X, \sqrt{d}) is ℓ_2 embeddable.
 - (a) Show that a cut metric is a metric of negative type.
 - (b) If (X, d_1) and (X, d_2) are of negative type and if $\alpha, \beta \in \mathbb{R}_{>0}$, then $(X, \alpha d_1 + \beta d_2)$ are of negative type.
 - (c) Conclude that ℓ_1 is of negative type.
- 3) a) Let $X \subseteq \mathbb{R}^n$ be a finite set. Show that $d(u, v) = ||u v||_2^2$ yields a metric on X if and only if the angle between any three points $u, v, w \in X$ satisfies $\angle u, v, w \leq \pi/2$, i.e., no angle is *obtuse*.
 - b) Show that this is the case for $X = \{0, 1\}^n$, i.e. the vertices of the hypercube. There is a matching upper bound: If a finite set $X \subseteq \mathbb{R}^n$ does not permit obtuse angles, the $|X| \leq 2^n$. It is not part of the exercise.
 - c) Conclude that the dimension of the ℓ_2 -embedding of (X, \sqrt{d}) , where (X, d) is of negative type, is at least $\log_2 |X|$.
- 4) A finite semi-metric (*X*, *d*), *X* = {1,..., *n*} is isometrically embeddable into ℓ_2^k if and only if the matrix $a(i, j), 1 \le i, j \le n-1$ as defined below is positive semidefinite and of rank at most *k*.

$$a_{ij} = 1/2 \left(d^2(i,n) + d^2(j,n) - d^2(i,j) \right).$$