Metric Embeddings
 Problem Set 2

October 7, 2022

These problems are discussed during the exercise session on Friday, October 7.

1) a) Let $K \subseteq \mathbb{R}^{n}$ be a centrally symmetric (around 0) convex, compact and full-dimensional set. Show that $\|v\|_{K}=\max \{t: t \cdot v \in K\}^{-1}$ is a norm. This norm is called ℓ_{K}.
b) Show that, if K is in addition a polytope described as $K=\left\{x \in \mathbb{R}^{n}:-\mathbb{1} \leqslant A x \leqslant \mathbb{1}\right\}$, with $\left.A \in \mathbb{R}^{m \times n}\right\}$, then ℓ_{K} embeds isometrically into ℓ_{∞}^{m}.
2) A finite metric (X, d) is called a metric of negative type, if (X, \sqrt{d}) is ℓ_{2} embeddable.
(a) Show that a cut metric is a metric of negative type.
(b) If (X, d_{1}) and (X, d_{2}) are of negative type and if $\alpha, \beta \in \mathbb{R}_{>0}$, then ($X, \alpha d_{1}+\beta d_{2}$) are of negative type.
(c) Conclude that ℓ_{1} is of negative type.
3) a) Let $X \subseteq \mathbb{R}^{n}$ be a finite set. Show that $d(u, v)=\|u-v\|_{2}^{2}$ yields a metric on X if and only if the angle between any three points $u, v, w \in X$ satisfies $\angle u, v, w \leqslant \pi / 2$, i.e., no angle is obtuse.
b) Show that this is the case for $X=\{0,1\}^{n}$, i.e. the vertices of the hypercube.

There is a matching upper bound: If a finite set $X \subseteq \mathbb{R}^{n}$ does not permit obtuse angles, the $|X| \leqslant$ 2^{n}. It is not part of the exercise.
c) Conclude that the dimension of the ℓ_{2}-embedding of (X, \sqrt{d}), where (X, d) is of negative type, is at least $\log _{2}|X|$.
4) A finite semi-metric $(X, d), X=\{1, \ldots, n\}$ is isometrically embeddable into ℓ_{2}^{k} if and only if the matrix $a(i, j), 1 \leqslant i, j \leqslant n-1$ as defined below is positive semidefinite and of rank at most k.

$$
a_{i j}=1 / 2\left(d^{2}(i, n)+d^{2}(j, n)-d^{2}(i, j)\right)
$$

