Metric Embeddings Problem Set 1

September 20, 2022

These problems are discussed during the exercise session on Friday, September 30.

- 1) a) Show that every embedding of an *n*-point equilateral space (every two points have distance 1) into the plane \mathbb{R}^2 with the usual Euclidean metric has distortion at least $\Omega(\sqrt{n})$.
 - b) Provide an embedding with distortion $O(\sqrt{n})$.
- 2) Show that every embedding of the cycle of length *n* (with the graph metric) into the line \mathbb{R} with the usual metric has distortion at least $\Omega(n)$.
- 3) Show that every finite tree metric space can be embedded isometrically into ℓ_1 . (You can start with embedding all trees with unit-length edges.)
- 4) a) Let $k \ge 1$. Give an isometric embedding of ℓ_1^k to $\ell_{\infty}^{2^k}$.
 - b) Devise an algorithm that, given a set *X* of n points in \mathbb{R}^k , computes the diameter of *X* under the ℓ_1 norm using $O(k2^k n)$ arithmetic operations.
 - c) Can you reduce the number of arithmetic operations to $O(2^k n)$ (or even further)?
- 5) Consider the set of integers $V = \{4, 5, 9\}$ and let d(u, v) = |u v| for $u, v \in V$. Write *d* as a conic combination of cut metrics

$$d = \sum_{S \in 2^S} \mu_S \cdot d_S,$$

where $\mu_S \in \mathbb{R}_{\geq 0}$ and d_S is the cut-metric induced by *S*.

6) Let $R, B \subseteq \mathbb{R}^2$ be two finite sets of *n* distinct points. We consider the usual Euclidean metric. Show the inequality

$$\sum_{u,v\in R} d(u,v) + \sum_{u,v\in B} d(u,v) \leq \sum_{u\in R} \sum_{v\in B} d(u,v).$$