Metric Embeddings
 Problem Set 1

September 20, 2022

These problems are discussed during the exercise session on Friday, September 30.

1) a) Show that every embedding of an n-point equilateral space (every two points have distance 1) into the plane \mathbb{R}^{2} with the usual Euclidean metric has distortion at least $\Omega(\sqrt{n})$.
b) Provide an embedding with distortion $O(\sqrt{n})$.
2) Show that every embedding of the cycle of length n (with the graph metric) into the line \mathbb{R} with the usual metric has distortion at least $\Omega(n)$.
3) Show that every finite tree metric space can be embedded isometrically into ℓ_{1}. (You can start with embedding all trees with unit-length edges.)
4) a) Let $k \geqslant 1$. Give an isometric embedding of ℓ_{1}^{k} to $\ell_{\infty}^{2^{k}}$.
b) Devise an algorithm that, given a set X of n points in \mathbb{R}^{k}, computes the diameter of X under the ℓ_{1} norm using $O\left(k 2^{k} n\right)$ arithmetic operations.
c) Can you reduce the number of arithmetic operations to $O\left(2^{k} n\right)$ (or even further)?
5) Consider the set of integers $V=\{4,5,9\}$ and let $d(u, v)=|u-v|$ for $u, v \in V$. Write d as a conic combination of cut metrics

$$
d=\sum_{S \in 2^{S}} \mu_{S} \cdot d_{S}
$$

where $\mu_{S} \in \mathbb{R}_{\geqslant 0}$ and d_{S} is the cut-metric induced by S.
6) Let $R, B \subseteq \mathbb{R}^{2}$ be two finite sets of n distinct points. We consider the usual Euclidean metric. Show the inequality

$$
\sum_{u, v \in R} d(u, v)+\sum_{u, v \in B} d(u, v) \leqslant \sum_{u \in R} \sum_{v \in B} d(u, v) .
$$

