Fine-Grained and Parameterized Complexity
Problem Set 12, for May 27th, 2021

Problem 1. In the MaxCut problem we are given an undirected graph on n vertices and our goal is to find a partition of the vertices into two sets that maximizes the number of edges going between the sets. Give an $\mathcal{O}^{*}\left(2^{\frac{\omega}{3} n}\right)$ time algorithm for MaxCut.

Problem 2. In the Minimum Consecutive Sums problem we are given n integers $a_{1}, a_{2}, \ldots, a_{n}$ and we need to compute for every $k \in\{1, \ldots, n\}$ the smallest sum of any k consecutive of these integers, i.e.

$$
\min _{i \in\{1, \ldots, n-k+1\}} x_{i}+\cdots+x_{i+k-1} .
$$

Prove that if there is a truly subquadratic algorithm for Minimum Consecutive Sums, then there is also a truly subquadratic algorithm for ($\mathrm{min},+$)-convolution, and vice versa.

Definition. In the Zero 3-Star problem we are given an edge-weighted four-partite graph $G=\left(V_{1} \cup V_{2} \cup V_{3} \cup V_{4}, E\right)$, with $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=\left|V_{4}\right|=n$ and $E \subseteq V_{1} \times\left(V_{2} \cup V_{3} \cup V_{4}\right)$, and we need to determine if there exist vertices $v_{1} \in V_{1}, v_{2} \in V_{2}, v_{3} \in V_{3}, v_{4} \in V_{4}$ that form a star of total weight 0 , i.e. $w\left(v_{1}, v_{2}\right)+w\left(v_{1}, v_{3}\right)+w\left(v_{1}, v_{4}\right)=0$.

Problem 3. Show that if 3 SUM can be solved in truly subquadratic time, then Zero 3 -Star can be solved in truly subcubic time.

Problem 4. Show that if Zero 3-Star can be solved in truly subcubic time, then 3SUM can be solved in truly subquadratic time. Hint: Reduce one instance of 3SUM of size n to $\mathcal{O}\left(k^{2}\right)$ instances of size n / k.

This problem set adds 1 point 0 points to the threshold for grade 4.0, and 2 points 1 point for 6.0. In the initial version of this problem set there was a serious mistake in Problem 1, therefore both thresholds are now decreased.

