Problem 1. Give an $\mathcal{O}\left(n^{[k / 2\rceil}\right)$ time algorithm for k-SUM.
Problem 2. Give a $\widetilde{\mathcal{O}}(n+d)$ time algorithm for 3 SUM, where d denotes the largest absolute value of an integer in the input. Hint: Use FFT.

Problem 3. In the $\mathrm{X}+\mathrm{Y}$ problem we are given two sets X and Y, each containing n integers, and we need to determine whether the sumset $X+Y=\{a+b \mid a \in X, b \in Y\}$ contains n^{2} distinct integers. Prove that if the $\mathrm{X}+\mathrm{Y}$ problem can be solved in truly subquadratic time, then 3SUM can also be solved in truly subquadratic time.

Problem 4. In the Unbounded Subset Sum problem we are given n integers s_{1}, \ldots, s_{n} and a target value t, and we need to decide if there exist nonnegative integers x_{1}, \ldots, x_{n} such that $\sum_{i \in[n]} x_{i} s_{i}=t$. Give a $\widetilde{\mathcal{O}}(n+t)$ time algorithm for Unbounded Subset Sum.

This problem set adds 1 point to the threshold for grade 4.0, and 2 points for 6.0

