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1 3SUM

Definition 1 (3SUM Problem). Given a set A of n integers decide if there exist x, y, z ∈ A
such that x+ y + z = 0.

Algorithms. The naive algorithm for 3SUM runs in O(n3) time. It is easy to come
up with a O(n2 log n) time algorithm: Put the input numbers into a balanced BST, then
iterate over n2 pairs (x, y) ∈ A × A and search for −(x + y) in the BST. Replacing the
BST with a hash table gives randomized O(n2) time algorithm.

There is also a simple deterministic O(n2) time algorithm. First, we sort the input
numbers, a1 6 a2 6 · · · 6 an. Now, for every k ∈ [n] we will determine in linear time if
there exist i, j ∈ [n] such that ai +aj = −ak. We start with i = 1, j = n. If ai +aj < −ak,
we know that for every other j′ < j we will have ai + a′j < −ak, therefore i cannot be
a part of a pair we are looking for, and we can safely increase i by one. Analogously, if
ai + aj > −ak, we decrease j by one. We stop when we find ai + aj = −ak, or when i
becomes greater than j and we know that there is no such pair we were looking for.

The currently fastest algorithm – due to Baran, Demaine, and Pătraşcu (Algorithmica
2008) – runs in time O(n2 log log n/ log2 n). Hence the following hypothesis.

Hypothesis (3SUM Hypothesis). There is no O(n2−ε) time algorithm for 3SUM, for any
ε > 0.

Variants. Sometimes it is more convenient to consider a variant of 3SUM in which we
are looking for a triple with x+ y = z instead of x+ y + z = 0, or in which we are given
three sets A,B,C and we are looking for a triple x ∈ A, y ∈ B, z ∈ C. We may also insist
on the three numbers being distinct or not. All these variants can be reduced to each
other, so they have the same time complexity, up to constant factors. We will implicitly
switch between the variants when convenient.

2 Hashing

A key tool for reductions from 3SUM, first used by Baran, Demaine, and Pătraşcu, is
almost-linear hashing.

Lemma 1. For every positive integer input size w and output size s, there exists a family
of hash functions H ⊆ [U ]→ [R], for U = 2w, R = 2s, such that

1. for all integers x, y ∈ [U ] and all hash functions h ∈ H

h(x) + h(y) = h(x+ y) + δ, for someδ ∈ ∆h,

where ∆h is a set of constant size;

2. given an integer z ∈ [U ] and two sets of n integers A,B ⊆ [U ] such that there are no
x ∈ A, y ∈ B with x+ y = z, the probability, over hash functions h drawn uniformly
at random from H, that there exist x ∈ A, y ∈ B such that h(x) + h(y) = h(z) + δ
for some δ ∈ ∆h is at most O(n2/R);
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3. given an integer y ∈ [U ] and a set of n integers A ⊆ [U ], if R 6 n, the probability,
over hash functions h drawn uniformly at random from H, that “x is in an overfull
bucket”, i.e., |{y ∈ A | h(x) = h(y)}| > 100n/R, is at most 1/6.

The family they use is h(x) = b(ax/2w−s)c mod 2s, where a is a random w-bit odd
number. The set ∆h is in that case {−1, 0, 1, R − 1, R,R + 1}. A proof that the fam-
ily has the desired properties can be found, e.g. in Karl Bringmann’s slides https:

//conferences.mpi-inf.mpg.de/adfocs-18/karl/3-3SUM.pdf. It is rather straight-
forward given some standard probabilistic analysis tricks.

As a first application of this tool, observe that, unlike APSP, 3SUM with numbers
bounded by n3 is as hard as the general case (at least for randomized algorithms). Indeed,
it is enough to set R = n3, apply a random hash function to all the input numbers, and
solve a separate instance of 3SUM for each δ ∈ ∆h. Here it is convenient to think of the
tripartite variant so that we can add the offset δ only to candidates for z. Probability of
a false positive per element is O(1/n), so by union bound the total probability of a false
positive is at most a constant. There are no false negatives.

3 Convolution 3SUM

In general, it is usually easier to make fine-grained reductions from problems for which
the naive algorithms are (conjectured to be) optimal. Now we will see such a problem
that is equivalent to 3SUM.

Definition 2 (Convolution 3SUM problem). Given a sequence of n integers a1, a2, . . . , an,
decide if there exist i, j ∈ [n] such that ai + aj = ai+j.

Theorem 1. If 3SUM is in T (n) time, then Convolution 3SUM is in O(T (n)) time.

Proof. Given an instance of Convolution 3SUM, replace each number ai with ai∗(2n+1)+i
and solve 3SUM on these numbers. Observe that (ai ∗ (2n+ 1) + i) + (aj ∗ (2n+ 1) + j) =
(ak ∗ (2n+ 1) + k) if and only if ai + aj = ak and i+ j = k.

Theorem 2. If Convolution 3SUM is in T (n) time, then 3SUM is in randomized O(T (n))
time.

Proof sketch. The idea is take a random hash function for R = n and put each number
x ∈ A at position ah(x) = x. An issue is that there will be multiple numbers hashing
to the same value. To deal with that we let each position ai to become a bucket storing
many numbers. If there are more than 100 elements in a bucket, we discard it completely.
The probability that we remove that way at least one element of a triple being a solution
is at most 3 · 1/6. Hence the probability of a false negative is at most 1/2. Now that
each bucket contains at most 100 elements, we can solve 1003 instances of Convolution
3SUM where in each instance we guess the index within a bucket for each element of a
triple.
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4 Jumbled Indexing

Definition 3 (Jumbled Indexing problem). Preprocess a text T over alphabet Σ to answer
queries asking whether there exists a substring (continuous fragment) of T with frequency
counts for each character matching the given query vector v : Σ→ N.

There is are two naive algorithms for Jumbled Indexing. One preprocesses all answers
inO(n2Σ) time, allowingO(Σ) time queries afterwards; another one does no preprocessing
and takes O(n log Σ) time per query. It turns out these two algorithms are best possible
(up to subpolynomial factors) under 3SUM Hypothesis.

Theorem 3. If Jumbled Indexing, with alphabet size log n, can be solved with O(n2−ε)
preprocessing time and O(n1−ε) query time, then Convolution 3SUM can be solved in

Õ(n2−ε) time.

For a proof see Section 2 in the paper by Amir et al. available at https://arxiv.

org/abs/1405.0189.
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