Fine-Grained and Parameterized Complexity
Problem Set 8, for April 22nd, 2021
EPFL

Problem 1. Prove that assuming SETH there is no algorithm that given three sets $U, V, W \subseteq\{0,1\}^{d}$ such that $|U|=|V|=|W|=n$ decides if there exist $u \in U, v \in V$, $w \in W$ such that $\sum_{i=1}^{d} u_{i} v_{i} w_{i}=0$ in time $\mathcal{O}\left(n^{3-\varepsilon} \operatorname{poly}(d)\right)$, for any $\varepsilon>0$.

Problem 2. Prove that for every constant $\alpha>0$ the Orthogonal Vectors Hypothesis is equivalent to the following hypothesis: There is no algorithm that given two sets $U, V \subseteq$ $\{0,1\}^{d}$ such that $|U|=n,|V|=n^{\alpha}$ decides if there exist $u \in U, v \in V$ such that $u \cdot v=0$ in time $\mathcal{O}\left(n^{1+\alpha-\varepsilon} \operatorname{poly}(d)\right)$, for any $\varepsilon>0$.

Problem 3. In the Longest Palindromic Subsequence problem we are given a string of length n, and we have to find its longest subsequence (of not necessarily consecutive elements) that is a palindrome (i.e. it reads the same backwards and forwards). Determine if the Longest Palindromic Subsequence problem can be solved in truly subquadratic time (i.e. in time $\mathcal{O}\left(n^{2-\varepsilon}\right)$ for some $\varepsilon>0$)

Problem 4. Give an $\mathcal{O}\left(n^{2} d^{0.373}\right)$ time algorithm for Orthogonal Vectors restricted to instances with $d \leqslant n$.

Problem 5. Give an $\mathcal{O}\left(n^{2.01}\right)$ time algorithm for Orthogonal Vectors restricted to instances with $d \leqslant n^{0.1}$.

Problem 6. In the All-Pairs Hamming Distance problem we are given a set of n strings, each of length n, and our goal is to compute for each pairs of strings (u, v) the Hamming distance between them, i.e. $\sum_{i=1}^{n} \mathbb{1}[u[i]=v[i]]$. Give an $\mathcal{O}\left(n^{2.99}\right)$ time algorithm for that problem.

This problem set adds 1 point to the threshold for grade 4.0, and 4 points for 6.0

