1 Seidel's algorithm for unweighted undirected APSP

Theorem 1. APSP in unweighted undirected n-node graphs can be computed in $\mathcal{O}\left(n^{\omega} \log n\right)$ time.

Proof. Given a graph $G=(V, E)$ we first use fast matrix multiplication to compute graph $G^{2}=\left(V, E^{2}\right)$, where

$$
E^{2}=\left\{(u, v) \mid(u, v) \in E \vee \exists_{w}(u, w) \in E \wedge(w, v) \in E\right\}
$$

We compute APSP recursively in G^{2}.
Since the diameter of each connected component halves with each recursive call, after $\log n$ calls we are left with a collection of cliques - each shortest path is of length 0,1 , or ∞, and we can easily compute all of them in $\mathcal{O}\left(n^{2}\right)$ time.

Now, given shortest paths $D(u, v)$ in G^{2} we want to compute shortest paths $d(u, v)$ in G. Note that either $d(u, v)=2 D(u, v)$ or $d(u, v)=2 D(u, v)-1$. We only need to distinguish between these two cases.

If $d(u, v)=2 D(u, v)$, then for all neighbors w of v there must $D(u, w) \geqslant D(u, v)$ (do you see why?). On the other hand, if $d(u, v)=2 D(u, v)-1$, then there must exists a neighbor w of v with $D(u, w)=D(u, v)-1$, and for all neighbors w there must $D(u, w) \leqslant D(u, v)$ (do you see why?).

Hence, we use fast matrix multiplication to compute the matrix Z such that

$$
Z(u, v)=\sum_{w} D(u, w) \cdot \mathbb{1}[(w, v) \in E] .
$$

Now

$$
d(u, v)= \begin{cases}2 D(u, v) & \text { if } Z(u, v) \geqslant \operatorname{deg}_{v} \cdot D(u, v) \\ 2 D(u, v)-1 & \text { if } Z(u, v)<\operatorname{deg}_{v} \cdot D(u, v)\end{cases}
$$

Exercise 1. Which parts of this algorithm do not generalize to directed graphs?

2 Faster (min, +)-product for small integers

Theorem 2. The (min, +)-product of two $n \times n$ matrices with entries in $\{0, \ldots, M\}$ can be computed in $\widetilde{\mathcal{O}}\left(M n^{\omega}\right)$ time.
Proof. Replace each input entry x with $(n+1)^{x}$; compute the standard (,$\left.+ \cdot\right)$-product; look at the least significant non-zero digits in $(n+1)$-ary encodings of the output entries.

Transformed entries need $M \log n$ bits to represent. Arithmetic operations (addition, subtraction, multiplication, division) on such numbers take $\widetilde{\mathcal{O}}(M \log n)$ time. Hence, the total running time is $\widetilde{\mathcal{O}}\left(M n^{\omega}\right)$.
Exercise 2. Show that the above requirement that the entries are nonnegative can be easily circumvented.
Exercise 3. Does the above algorithm, together with the reduction from APSP to (min, +)-product, yield a $\widetilde{\mathcal{O}}\left(M n^{\omega}\right)$ time algorithm for APSP in directed graphs with weights in $\{-M, \ldots, M\}$?

