
Fine-Grained and Parameterized Complexity
Notes for April 15th, 2021

1 Why ETH and SETH are defined as they are?

Intuitively, ETH means that 3-SAT cannot be solved in 2o(n) time, and SETH that SAT
cannot be solved in O((2 − ε)n) time. However, the actual hypotheses are stronger as-
sumptions than these layman variants.

Indeed, while s3 > 0 implies that there is no 2o(n) time algorithm for 3-SAT, it may
well happen that for every ε > 0 there is an O(εn) time algorithm (hence ETH is false)
but there is no single 2o(n) time algorithm. Similarly for SETH, it may happen that for
every k there is an O(1.99n) time algorithm for k-SAT, but there is no O(1.99n) time
algorithm for SAT with the clause size allowed to grow with the input size.

Do we need these stronger less-likely hypotheses with complicated definitions? Often
we do. ETH-based lower bounds usually require bounding the number of clauses and we
do not have a variant of Sparsification Lemma that avoids the 2εn overhead. For SETH-
based lower bounds, when we need to bound the number of clauses, we need to work with
k-SAT, because we do not have a variant of Sparsification Lemma for general SAT.

2 Lower bound for LCS

Recall the Longest Common Subsequence (LCS) problem: Given two sequences A,B
of length n find a longest sequence that is a subsequence (i.e., elements need not be
consecutive) of A and a subsequence of B.

Exercise 1. What is LCS(educated, coauthor)?

LCS can be solved in O(n2) with classical Wagner-Fischer dynamic programming
algorithm. Let DP [i][j] = |LCS(A[1..i], B[1..j])|, where X[1..i] denotes the prefix of X
of length i.

Exercise 2. Give a recursive formula for DP [i][j].

The only improvement over this algorithm to date is due to Masek and Paterson,
their algorithm runs in O(n2/ log2 n). Can we solve LCS in truly subquadratic time,
e.g. O(n1.99)? In 2015 Abboud, Backurs and Vassilevska Williams, and independently
Bringmann and Künnemann proved that we cannot, unless SETH fails. Below there is
a reduction from OV to LCS taken from Karl Bringmann’s slides available at https:

//conferences.mpi-inf.mpg.de/adfocs-18/karl/1-OV.pdf.
The reduction constructs a vector gadget for each vector from the input OV instance.

Vector gadgets are composed of smaller coordinate gadgets, concatenated together with a
suitable padding between them. The length of LCS of two vector gadgets is large when
they orthogonal, and small otherwise. Finally, vector gadgets for vectors from each of the
two input sets are combined into one long string using an OR-gadget.

An OV instance with two sets of n vectors of dimension d is reduced to an LCS instance
with two strings of length O(d2 · n) over an alphabet of size 5. Hence, an O(n2−ε) time
algorithm for LCS would give an O(n2−εpoly(d)) time algorithm for OV, falsifying OV
Hypothesis and SETH.

1

https://conferences.mpi-inf.mpg.de/adfocs-18/karl/1-OV.pdf
https://conferences.mpi-inf.mpg.de/adfocs-18/karl/1-OV.pdf

Fine-Grained and Parameterized Complexity
Notes for April 15th, 2021

Proof: Coordinate Gadgets

1" ∶= 1110" ∶= 001

1& ∶= 0000& ∶= 011

'()(+,", .,&) can be written as 0(+, 1 .,), with 0 0 > 0 1

we want to simulate the coordinates {0,1} and the behavior of +, 1 .,

OV: Given 5, 6 ⊆ {0,1}8 of size 9 each
Are there + ∈ 5, . ∈ 6 such that ∀<: +, 1 ., = 0

'() = 0
'() = 2

'() =
2'() = 2

replace +, by +," and ., by .,&

Proof: Vector Gadgets

we want to simulate orthogonality of ! ∈ #, % ∈ &

OV: Given #, & ⊆ {0,1}, of size - each
Are there ! ∈ #, % ∈ & such that ∀/: !1 2 %1 = 0

concatenate !45, … , !,5, padded with a new symbol 2

89 ! ∶= !45 2…2 !;5 2…2 !<5 2…2 !=5

89 % ∶= %4> 2…2 %;> 2…2 %<> 2…2 %=>

length 4@

- no LCS matches symbols in !15 with symbols in %A> where / ≠ C
lose one block of 2‘s
cannot make up for it with symbols 0/1 since there are to few of them

Proof: Vector Gadgets

we want to simulate orthogonality of ! ∈ #, % ∈ &

OV: Given #, & ⊆ {0,1}, of size - each
Are there ! ∈ #, % ∈ & such that ∀/: !1 2 %1 = 0

concatenate !45, … , !,5, padded with a new symbol 2

89 ! ∶= !45 2…2 !;5 2…2 !<5 2…2 !=5

89 % ∶= %4> 2…2 %;> 2…2 %<> 2…2 %=>

- ?@A 89 ! , 89 % = B − 1 4B + ∑1G4, ?@A(!15, %1>)

#2‘s

=J(!1 2 %1)

?@A 89 ! , 89 % = @ + 2
?@A 89 ! , 89 % ≤ @

if ! ⊥ %
otherwise

for some constant @

2

Fine-Grained and Parameterized Complexity
Notes for April 15th, 2021

Proof: Normalized Vectors Gadgets

new vector gadgets:

OV: Given !, # ⊆ {0,1}) of size * each
Are there + ∈ !, - ∈ # such that ∀/: +1 2 -1 = 0

45 + 3…3 45 + 3…3

3…3 45 - 3…3 45 -

45′ + :

45′ - :

9:;(45= + , 45= -) = max{9:; 45 + , 45 - , :}

length :

9:;(45= + , 45= -) = : + 2
:

if + ⊥ -
otherwise

write 45 for 45‘

Proof: OR-Gadget

fresh symbol 4, want to construct:

OV: Given ", $ ⊆ {0,1}* of size + each
Are there , ∈ ", . ∈ $ such that ∀0: ,2 3 .2 = 0

in the picture: + = 3

67 " 1 4…4 67 " 2 4…4 67 " 3 4…4 67 " 1 4…4 67 " 2 4…4 67(" 3)

4……………4 67 $ 1 4…4 67 $ 2 4…4 67 $ 3 4……………4

length 100<= length 100<= 3 2+

Proof: OR-Gadget

fresh symbol 4, want to construct:

OV: Given ", $ ⊆ {0,1}* of size + each
Are there , ∈ ", . ∈ $ such that ∀0: ,2 3 .2 = 0

in the picture: + = 3

can align 67($ 9) with 67(" Δ + 9 mod +) for any offset Δ

@AB ≥ 2+ − 1 100FG + max
J
∑LMN
O @AB(67 " Δ + 9 mod + , 67 $ 9)

If there is an orthogonal pair, some offset Δ aligns this pair, and we get

#4‘s in upper string maximize over offset

67 " 1 4…4 67 " 2 4…4 67 " 3 4…4 67 " 1 4…4 67 " 2 4…4 67(" 3)

4……………4 67 $ 1 4…4 67 $ 2 4…4 67 $ 3 4……………4

@AB ≥ 2+ − 1 100FG + +A + 2

need normalization!Proof of Claim
Given !, # ⊆ {0,1}) of size * each
Are there + ∈ !, - ∈ # such that ∀/: +1 2 -1 = 0

45 ! 1 4…4 45 ! 2 4…4 45 ! 3 4…4 45 ! 1 4…4 45 ! 2 4…4 45(! 3)

4……………4 45 # 1 4…4 45 # 2 4…4 45 # 3 4……………4

Claim: if no orthogonal pair exists: <=> ≤ 2* − 1 100AB + *=

<=> ≤ 2* − 1 100AB +D
EFG

H
0

45 # I
−|4…4|

if 45(# I) is not matched

if 45(# I) is matched to > 1#4‘s in upper string

non-orthogonal

could match VG completely, but loose many 4‘s
≤ 0

= if 45(# I) is matched to one

3

Fine-Grained and Parameterized Complexity
Notes for April 15th, 2021

3 Convolutions

Fix two binary operations ⊕ and ⊗. The (⊕,⊗)-convolution problem is, given two vectors
A,B of length n, compute the vector C such that

Ck =
⊕
i+j=k

Ai ⊗Bj = (A0 ⊗Bk)⊕ (A1 ⊗Bk−1)⊕ · · · ⊕ (Ak ⊗B0).

Assuming the binary operations run in constant time, any convolution can be computed
in O(n2) time. Some convolutions can be computed much faster.

The most common convolution, (+, ·)-convolution is equivalent to polynomial multi-
plication (can you see why?) and is frequently used for multiplying large integer (can
you see how?). It can be solved in O(n log n) time using Fast Fourier Transform (FFT).
FFT is beyond the scope of this course (but it is not very difficult, check it out if you are
interested), but we will see another subquadratic algorithm for polynomial multiplication,
due to Karatsuba.

Let P (x) and Q(x) be two degree n polynomials we want to multiply. Let us write
them down as P (x) = A(x)xn/2 + B(x) and Q(x) = C(x)xn/2 + D(x), where A,B,C,D
are of degree n/2. Note that

PQ = ACxn + (AD +BC)xn/2 +BD,

and AD + BC can be written as (A+ B)(C +D)− AC − BD. Hence, it is sufficient to
perform (recursively) three degree n/2 multiplications, namely AC, BD, (A+B)(C+D),
and several linear-time additions.

The running time of Karatsuba algorithm is described by the recursive equation

T (n) = 3T (n/2) +O(n),

and by Master Theorem T (n) = O(nlog2 3) 6 O(n1.585).

4 Pattern matching with mismatches

In the Pattern Matching With Mismatches problem (sometimes called Approximate Pat-
tern Matching) we are given a text of length n, a pattern of length m, and an integer
k, and we want to know if there is a continuous fragment of the text which equals to
the pattern everywhere apart from at most k positions (in other words, their Hamming
distance is at most k).

By an easy observation, any (n,m, k)-instance of the problem can be reduced to dn/me
independent (2m,m, k)-instances. In the running time dependence on n was linear, this
reduction does not change the asymptotic running time, and if the dependence was su-
perlinear, the reduction improves the overall running time. Thus, we can restrict our
attention to instances with n = Θ(m).

Exercise 3. Solve Pattern Matching With Mismatches in Õ(n3/2) time1. Hint: compute
for each offset i the number of positions at which the pattern matches the fragment of the

1Õ(f(n)) = O(f(n)polylog(n))

4

Fine-Grained and Parameterized Complexity
Notes for April 15th, 2021

text starting at position i. To this end, count naively characters that appear less than
√
n

times in both strings, and for each of the remaining characters run FFT on 0-1 vectors
indicating where the character appears.

5 Matrix multiplication

Recall that the product of two n× n matrices A, B is the n× n matrix C such that

Cij =
n∑
k=1

Aik ·Bkj.

That can be naively computed in O(n3). Volker Strassen was the first one to give a truly
subcubic algorithm for the problem. His algorithm resembles Karatsuba algorithm for
integer/polynomial multiplication, but the formulas are more obscure. It splits each of
the two input matrices into four n/2× n/2 matrices, and performs seven (instead of naive
eight) n/2 × n/2 recursive matrix multiplications and a number of matrix additions. This
gives the running time O(nlog2 7) 6 O(n2.81).

After Strassen’s breakthrough people came up with smarter and smarter ways to set
up the recursion leading to better and better running times. See also https://www.

smbc-comics.com/comic/mathematicians and Table 1 (borrowed from slides by Lech
Duraj). The best possible matrix multiplication exponent is denoted by

ω = inf{δ | matrix multiplication can be solved in time O(nδ).

It is a big open problem whether ω = 2.

Table 1: Matrix multiplication algorithms
O(n3) näıve
O(n2.81) 1969 Strassen
O(n2.79) 1979 Pan
O(n2.78) 1979 Bini et al.
O(n2.55) 1981 Schoenhage
O(n2.53) 1981 Pan
O(n2.52) 1982 Romani
O(n2.50) 1982 Coppersmith, Winograd
O(n2.48) 1986 Strassen
O(n2.376) 1987 Coppersmith, Winograd
O(n2.373) 2010 Stothers
O(n2.3729) 2012 Vassilevska Williams
O(n2.3728639) 2014 Le Gall
O(n2.3728596) 2021 Alman, Vassilevska Williams

All these truly subcubic algorithms are considered impractical, because constants hid-
den in the O notation make them faster than the naive cubic algorithm only for matrices

5

https://www.smbc-comics.com/comic/mathematicians
https://www.smbc-comics.com/comic/mathematicians

Fine-Grained and Parameterized Complexity
Notes for April 15th, 2021

so large they cannot be conceivably stored in a computer, let alone multiplied.2 Some
recent experimental studies3 challenge that folk wisdom, showing that Strassen algorithm
can be beneficial already for reasonably sized (millions of entries) matrices. Nevertheless,
asymptotically faster algorithms remain unpractical.

The fastest algorithm that does not use Strassen-like tricks, even for Boolean matrix
multiplication, is due to Huacheng Yu and runs in O(n3polyloglogn/ log4 n) time.

This motivates the following “hypothesis” (in quotes because it is not well-defined).

Hypothesis 1 (BMM “Hypothesis”). There is no combinatorial4 algorithm running in
O(n3−ε) time, for any ε > 0, that given two 0-1 matrices A and B, both of size n × n,
computes their Boolean product, that is the n× n matrix C such that

C[i][j] = (A[i][1] ∧B[1][j]) ∨ (A[i][2] ∧B[2][j]) ∨ · · · ∨ (A[i][n] ∧B[n][j]).

6 BMM-based lower bound for Pattern Matching

The reduction sketched above shows that computing the Hamming distances between
a pattern and all fixed-length fragments of a text, both of size O(n), can compute the
Boolean product of two

√
n×
√
n matrices. Hence, a combinatorial algorithm solving that

problem (which is harder than Pattern Matching With Mismatches, but is something that
the algorithm form Exercise 3 does anyway) in O(n3/2−ε) would falsify BMM Hypothesis.

A conclusion is that if we want to improve over the Õ(n3/2) running time, we should
probably look for a way to use a fast matrix multiplication algorithm as a subprocedure.

2See this blog post on galactic algorithms: https://rjlipton.wpcomstaging.com/2010/10/23/

galactic-algorithms/.
3E.g. https://dl.acm.org/doi/10.5555/3014904.3014983
4The term combinatorial, which is not well-defined, is supposed to rule out Strassen-like algorithms.

6

https://rjlipton.wpcomstaging.com/2010/10/23/galactic-algorithms/
https://rjlipton.wpcomstaging.com/2010/10/23/galactic-algorithms/
https://dl.acm.org/doi/10.5555/3014904.3014983

	Why ETH and SETH are defined as they are?
	Lower bound for LCS
	Convolutions
	Pattern matching with mismatches
	Matrix multiplication
	BMM-based lower bound for Pattern Matching

