Fine-Grained and Parameterized Complexity
Problem Set 6, for April 1st, 2021
EPFL

Problem 1. Given a graph G and an integer k, the Induced Matching problem asks to find an induced matching of size k, i.e., a set of k edges $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)$ such that the $2 k$ endpoints are all distinct and there is no edge between $\left\{u_{i}, v_{i}\right\}$ and $\left\{u_{j}, v_{j}\right\}$ for any $i \neq j$. Prove that Induced Matching is W[1]-hard.

Problem 2. In the Matching Strings problem we are given a set of n pairs of strings $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$, over an alphabet of size k, and the goal is to find a nonempty sequence of indices $i_{1}, i_{2}, \ldots, i_{\ell}$ such that $a_{i_{1}} \odot a_{i_{2}} \odot \ldots \odot a_{i_{\ell}}=b_{i_{1}} \odot b_{i_{2}} \odot \ldots \odot b_{i_{\ell}}$, where © denotes the string concatenation. Prove that Matching Strings parameterized by the alphabet size k is fixed parameter tractable.

Problem 3. Propose an algorithm that, given a CNF formula with n variables and m clauses, decides if the formula is satisfiable in time $\mathcal{O}\left(2^{m} \cdot \operatorname{poly}(n, m)\right)$. Hint: solve the more general problem of counting the number of satisfying assignments, and to this end use the inclusion-exclusion principle.

Problem 4. In the Orthogonal Vectors problem we are given an n-element set of $0-1$ vectors $A \subseteq\{0,1\}^{d}$ and we need to decide if there exist two vectors $u, v \in A$ that are orthogonal, i.e., $\sum_{i=1}^{d} u_{i} v_{i}=0$ (note that we compute the sum in \mathbb{R}, and not in \mathbb{Z}_{2}). Prove that for dimension $d=c \log n$ the Orthogonal Vectors be solved in $\mathcal{O}\left(n^{c+1}\right)$ time.

Problem 5. The diameter of a graph is the largest distance (length of a shortest path) between any two vertices in this graph, or infinity if the graph is not (strongly) connected. Propose an algorithm that, given a directed unweighted graph $G=(V, E)$, finds, in time $\mathcal{O}(|V|+|E|)$, a 2-approximation of the diameter of G, i.e., an integer d such that the diameter is in $[d, 2 d]$.

This problem set adds 1 point 0 points to the threshold for grade 4.0, and 2 points 1 point for 6.0
Problem 2 was an April fool - the Matching Strings problem is actually a famous undecidable problem, known under the name Post Correspondence Problem, hence no algorithm, not to mention an FPT one, can solve it.

