
Fine-Grained and Parameterized Complexity
Notes for April 1st, 2021

1 SAT algorithms, ETH and SETH

The brute-force algorithm – checking all possible assignments – solves CNF-SAT in O(2n ·
poly(n,m))) = O∗(2n) time, where n and m denote the numbers of variables and clauses,
respectively. Specifically for 3-SAT, there is a long list of improved algorithm. The
current best (Hertli, FOCS’11) runs in O(1.3071n) = O(20.3863n) time. For k > 3, we
also know better-than-brute-force algorithms for k-SAT, but the base of the exponential
function grows with k. In particular, none of these algorithms is faster than O(21−c/n) for
a constant c. This means that, with k growing to infinity, their running times converge
to the naive bound O∗(2n). This motivates the following definition and hypotheses.

Definition 1. sk = inf{δ | k-SAT can be solved in O(2δn) time}.

Exercise 1. Show that s2 = 0.

Hypothesis 1 (Exponential Time Hypothesis (ETH)). s3 > 0.

Hypothesis 2 (Strong Exponential Time Hypothesis (SETH)). limk→∞ sk = 1.

As we will see later in the course, SETH implies ETH, hence the name is justified.

2 Sparsification Lemma

Let us focus on our favorite NP-complete problem – Vertex Cover – and recall its NP-
hardness proof.

Exercise 2. Show a reduction from 3-SAT to Vertex Cover that produces instances with
2n+ 3m vertices, n+ 6m edges, and k = n+ 2m.

A 3-SAT instance can have at most m = O(n3) clauses. An immediate consequence

of the above reduction is that, assuming ETH, there is no 2o(|V |
1/3) nor O∗(2o(k1/3)) time

algorithm for Vertex Cover. Given that the best FPT algorithms for Vertex Cover run in
time O∗(2ck), for a constant c, this is not a tight lower bound. Now we will learn a tool
that will let us close that gap.

Theorem 1 (Sparsification Lemma (Impagliazo, Paturi, Zane)). For ε > 0, given a
k-CNF formula ψ on n variables, one can compute 2εn k-CNF formulas on n-variables
ψ1, . . . , ψ2εn such that: (1) ψ is satisfiable if and only if at least one of ψi’s is satisfiable
(in other words, ψ ≡ ψ1∨ · · ·∨ψ2εn), and (2) each ψi has at most ck,εn clauses, where ck,ε
is a constant that depends only on k and ε. The formulas cane be found in O∗(2εn) time.

Proof sketch. Think of a bounded-search-tree algorithm for SAT. As long as the formula
is not sparse enough, we can find a small subset of literals that appears in many clauses.
We branch on whether at least one of these literals is satisfied. In the yes-branch, we
remove all the clauses containing the subset, and add a single clause composed of only
that subset. In the no-branch, we remove the subset from each of the containing clauses.
It remains to carefully choose the parameters for small and for many, and analyse the
depth of the tree, which is highly nontrivial. An accessible analysis is available in Mohan
Paturi’s slides from ADFOCS’18: https://conferences.mpi-inf.mpg.de/adfocs-18/

mohan/2018_adfocs_2.pdf#page=26.

1

https://conferences.mpi-inf.mpg.de/adfocs-18/mohan/2018_adfocs_2.pdf#page=26
https://conferences.mpi-inf.mpg.de/adfocs-18/mohan/2018_adfocs_2.pdf#page=26

Fine-Grained and Parameterized Complexity
Notes for April 1st, 2021

Now we can easily prove that an O∗(2o(k)) time algorithm for Vertex Cover would
break ETH. Indeed, for any ε > 0, we could first run the Sparsification Lemma, then
apply to each formula the 3-SAT-to-VC reduction, and finally run the hypothesized VC
algorithm. That would give an O∗(2εn+o(n)) time algorithm for 3-SAT, for any ε > 0,
implying that s3 = 0.

Similar arguments apply to many classical NP-complete problems – e.g., Feedback
Vertex Set, 3-Coloring, Dominating Set – ruling out O∗(2o(k)) time algorithms, unless
ETH fails. Moreover, since 3-SAT can be reduced to Planar-3-SAT with only a quadratic
increase in the formula size, most of these problems restricted to planar graphs cannot have
O∗(2o(

√
k)) time algorithms (assuming ETH). That matches the upper bounds following

from the grid theorem and dynamic programming on tree decomposition.
ETH can be used to lower bound asymptotics of a function in running time’s exponent.

In order to bound a specific constant, we would need SETH. Unfortunately, so far we do
not know how to prove SETH-based lower bounds against FPT algorithms parameterized
by solution size (can you see why? try to go through the VC example). However, SETH
is very useful for proving tight bounds for problems parameterized by treewidth. E.g.,
under SETH, there is no O∗((2−ε)2) time algorithm for Vertex Cover and no O∗((3−ε)2)
time algorithm for Dominating Set on graphs of treewidth (or even pathwidth) bounded
by w. If you are interested, see Chapter 14.5.2 in the FPT book (pages 508–514).

3 Orthogonal Vectors

Most SETH-based lower bounds for polynomial time problems go through an intermediate
problem called Orthogonal Vectors.

Definition 2 (Orthogonal Vectors (OV) problem). Given two sets of d-dimensional 0-1
vectors U ,V ⊆ {0, 1}d, both of the same size |U| = |V| = n, decide if there exists a pair of
vectors u ∈ U and v ∈ V that are orthogonal, i.e., their inner product u ·v :=

∑d
i=1(ui ·vi)

equals 0.

The OV problem is equally often defined with one set of vectors instead of two. As
we will see later, the two problems have the same running time, up to constant factors.

The following hypothesis is implied by SETH.

Hypothesis 3 (OV Hypothesis). There is no O(n2−εpoly(d)) time algorithm for OV, for
any constant ε > 0.

Theorem 2 (Williams (ICALP’04)). SETH implies OV Hypothesis.

Proof. Take any CNF-SAT instance with n variables and m clauses, and split the variables
into two sets, each of size n/2. Consider every possible assignment to the variables from
the first set, and for each such assignment create an m-dimensional (0, 1)-vector whose
i-th coordinate equals 0 if the assignment satisfies the i-th clause. Let U denote the
just constructed set of 2n/2 vectors. Repeat the same procedure for the second half of
variables to obtain set V . Now, observe that a satisfying assignment to all variables can
be composed out of two partial assignments, one to the first half and one to the second
half, such that any clause is satisfied by at least one of them. This corresponds to the

2

http://parameterized-algorithms.mimuw.edu.pl/parameterized-algorithms.pdf#page=524

Fine-Grained and Parameterized Complexity
Notes for April 1st, 2021

condition that for each i ∈ [m] at least one of the two vectors, representing the two
partial assignments, has 0 as its i-th coordinate. That is, an assignment is satisfying if
and only if the two vectors are orthogonal. Therefore, if there is an O(n2−εpoly(d)) time
algorithm for OV, applying it to the sets U ,V yields an O(2(n/2)·(2−ε)poly(m)) algorithm
for CNF-SAT, which refutes SETH.

Note that lower bounds proved by a reduction from OV should be more believable
than those that follow directly from SETH – it is possible that SETH is false while OV
Hypothesis remains true.

Now we will see our first lower bound for a polynomial time problem. Recall the
diameter approximation problem from the last problem set.

Theorem 3 (Roditty, Vassilevska Williams (STOC’13)). Assuming OV Hypothesis, di-
ameter cannot be approximated within a factor of (3/2)−ε in O(n2−ε) time, for any ε > 0,
even in graphs with m = n1+o(1) edges.

Proof. (From Virginia Vassilevska Williams’s slides1) Consider the following graph:

X Ynode per vector node per vector
node per

coordinate

edge if
ui = 1

edge if
vj = 1

Observe that:

• any two vector nodes from the same side are at distance 2;
• any coordinate node is at distance 2 from everyone;
• X and Y are at distance 2 from everyone;
• two vector nodes u and v from different sides are at distance

– 2 if there exists i with ui = vi = 1,
– 3 otherwise.

Hence, the diameter is 3 if there is exists an orthogonal pair, and 2 otherwise.
With Sparsification Lemma we can assume d = O(log n). The graph has O(n) nodes

and m = O(n log n) edges. An O(m2−ε) time algorithm distinguishing between diameter
2 and 3 would falsify OV Hypothesis.

The same paper2 provides a matching upper bound: a (3/2)-approximation algorithm

running in time Õ(m
√
n). (The Õ notation is a polynomial-time analogue of O∗, i.e.,

Õ(f(n)) = O(f(n) · polylog(n)).)

1https://people.csail.mit.edu/virgi/Graph%20problems.pdf#page=27
2https://people.csail.mit.edu/virgi/diam.pdf

3

https://people.csail.mit.edu/virgi/Graph%20problems.pdf#page=27
https://people.csail.mit.edu/virgi/diam.pdf

	SAT algorithms, ETH and SETH
	Sparsification Lemma
	Orthogonal Vectors

