
Fine-Grained and Parameterized Complexity
Notes for March 18th, 2021

1 Iterative compression: disjoint variant in FPT time

As mentioned last week, Feedback Vertex Set in undirected graphs in an example of a
problem that admits an FPT algorithm via the iterative compression, but the disjoint
variant of the problem is (likely) not solvable in polynomial time.

In the Disjoint Feedback Vertex Set, we are given a graph G = (V,E), a subset of
forbiden vertices W ⊂ V , which is an FVS (i.e., G[V \W] is a forest), and an integer
k. The goal is to find a FVS in G of size at most k disjoint from W . Note that in the
definition we do not assume that the size of W is bounded by k or a function of k. This
more general problem definition will be convenient to formulate a recursive algorithm.

Please read Chapter 4.3.1 in the FPT book (pages 87–88) for an O∗(4k) time algorithm
for Disjoint FVS. Note that the algorithms is an interesting example of the bounded search
tree technique where the progress measure is different than the prarameter.

2 Algorithms for computing treewidth

The exact treewidth of a graph can be found in kO(k) · n time, with an algorithm due
to Bodlaender. Alternatively, there is a 4-approximate algorithm – i.e., it outputs a tree
decomposition of width 4w + 4 or concludes that the treewidth is greater than than w –
running in time O(8kk2 · n2), and a 5-approximate algorithm running in time 2O(k) · n.

Usually, when we talk about running times of FPT algorithms for graph problems
parameterized by treewidth, we assume that a tree decomposition is given on input.

3 Nice decomposition

Constructing dynamic programming algorithms working with tree decomposition is often
much easier if we assume the decomposition is a nice. A nice tree decomposition is a rooted
tree that satisfies the basic requirements of a tree decomposition and two additional ones.
First, the root and all the leaves have empty bags. Second, each node is either an introduce
node, a forget node, or a join node. We say that a node t is:

• an introduce node if it has exactly one child s, and Bt = Bs ∪ {v}, for a vertex
v ∈ V ;

• a forget node if it has exactly one child s, and Bt = Bs \ {v}, for a vertex v ∈ V ;

• a join node if it has exactly two children s1 and s2, and Bt = Bs1 = Bs2 .

Given a width w tree decomposition T of graph G = (V,E), one can compute, in time
O(w2 · max(|V |, |T |)), a nice tree decomposition of the same width that has O(w · |V |)
nodes.

1

http://parameterized-algorithms.mimuw.edu.pl/parameterized-algorithms.pdf#page=103

Fine-Grained and Parameterized Complexity
Notes for March 18th, 2021

4 Win-win

We often use an algorithm for small treewidth graphs as a subroutine in an algorithm for
general graphs. A common method to do that is to notice that the problem has a trivial
solution if the treewidth is too large.

For example, consider the Vertex Cover problem paramterized by solution size. If a
graph admits a vertex cover of size at most k, then it has treewidth at most k. Indeed,
consider a tree decomposition that is a path of length n − k and each of its nodes con-
tains the same k vertices from a vertex cover and one other vertex. To exploit this idea
algorithmically, we can first compute (an approximation of) the treewidth, and if it is too
large, we immediately answer NO, otherwise we run an FPT algorithm parameterized by
treewidth.

More interesting results of this kind are based on grid theorems. For an integer t,
t-grid is the graph G = (V,E) with V = [t]× [t] and

E =
{(

(u, v), (u+ 1, v)
)
| (u, v) ∈ [t−1]× [t]

}
∪
{(

(u, v), (u, v+ 1)
)
| (u, v) ∈ [t]× [t−1]

}
.

Theorem 1 (Chekuri-Chuzhoy, STOC’14). If a graph does not contain t-grid as a minor,
then its treewidth is bounded by t98+o(1).

Theorem 2 (Robertson-Seymour-Thomas and Gu-Tamaki). If a planar graph does not
contain t-grid as a minor, then its treewidth is bounded by 9t

2
, and its (9t

2
+ ε)-width tree

decomposition can be found in O(n2) time.

Note that t-grid contains a matching of size t2/2, hence its vertex cover size is at least
t2/2, and taking a minor can only decrease the vertex cover size. Therefore, if a planar
graph has treewidth larger than

√
k ·const, then it cannot have a vertex cover smaller than

k. This easily leads to an algorithm for Vertex Cover in planar graphs (parameterized by

solution size) running in time 2O(
√
k)n.

Similar arguments lead to 2O(
√
k) or kO(

√
k) time algorithms for, e.g., Independent Set,

Dominating Set, Feedback Vertex Set, or Longest Path, all in planar graphs.

2

	Iterative compression: disjoint variant in FPT time
	Algorithms for computing treewidth
	Nice decomposition
	Win-win

