
Fine-Grained and Parameterized Complexity
Notes for March 11th, 2021

1 Vertex Cover above LP

So far we have seen algorithms and kernels for the Vertex Cover problem prameterized
by the solution size k. One could argue that this is not a “practically relevant” param-
eterization. Indeed, a graph needs a very specific structure to have large n and small k.
Now we will consider a parameter that can be useful more often.

New parameter. Recall the LP relaxation of Vertex Cover from the previous class. We
will denote the value of its optimal solution simply by LP . Let us consider the parameter
` = k − LP . It is always non-negative, because LP is a lower bound for the actual
(integral) minimum vertex cover. More importantly, a graph can have a large optimal
vertex cover k but still a small parameter ` (in other words, the LP-based lower bound can
be almost tight). For such graphs, algorithms parameterized by ` are much more useful
than those parameterized by k, even if their (exponential) running time dependence on
the parameter is worse.

Algorithm. Now we will see an O∗(4k−LP ) time algorithm for Vertex Cover. The al-
gorithm is based on the bounded search tree technique. In each node of the search tree
we begin by exhaustively applying a variant of the reduction rule we already know from
the LP-based kernel: as long as there is a vertex v such that there exists an optimal LP
solution assigning xv = 1, we add v to the cover and decrease our budget k by one.

Exercise 1. Prove that the above reduction rule does not increase the parameter k−LP .

Now we branch on any edge (u, v) ∈ E, i.e. we recursively consider two cases: (1) u belongs
to the cover, and (2) v belongs to the cover. In both cases k decreases by 1, but LP can
also decrease – conveniently, it cannot decrease too much.

Exercise 2. Prove that if the only optimal half-integral LP solution assigns 1/2 to all
vertices, then removing any vertex from the graph decreases the value of the LP solution
by at most 1/2.

Hence, at each level of the search tree, we decrease the parameter k − LP by at
least 1/2, thus the tree has depth at most 2 · (k − LP ), and the algorithm indeed runs in
O∗(22(k−LP )) = O∗(4k−LP ) time.

Application. Now we will see an example in which the above parameterization is indeed
useful. Let us consider a parameterized version of the Max-2-SAT problem (recall that
Max-2-SAT is NP-hard, in contrast to 2-SAT, which is in P).

Given a 2-CNF formula and an integer k, the Almost-2-SAT problem asks to find
an assignment that satisfy all but at most k clauses. The task can be reformulated as:
remove at most k clauses to make the formula satisfiable.

We will begin by solving a variable deletion variant of the problem. Given a 2-CNF
formula and an integer k, the Variable-Deletion-2-SAT problem asks to find a set of at
most k variables such that after removing them (and all clauses that contain them) the
formula is satisfiable. In other words, removing a variable is equivalent to setting it to
both true and false at the same time.

1



Fine-Grained and Parameterized Complexity
Notes for March 11th, 2021

Consider a 2-CNF formula with n variables, and construct the following graph. It has
2n vertices, corresponding to literals. For each variable v, literals v and ¬v are connected
with an edge. Moreover, for each clause, the two literals it contains are connected with
an edge.

Exercise 3. What is the value of an optimal solution to the vertex cover LP relaxation
for the above graph?

Exercise 4. How does the size of the minimum vertex cover in the above graph relate to
the optimal Variable-Deletion-2-SAT solution for the initial formula?

Now it remains to show that the variable deletion and clause deletion variants are
equivalent.

Exercise 5. Prove that the Almost-2-SAT and Variable-Deletion-2-SAT problems are
equivalent in the sense that an O∗(f(k)) time algorithm for one of them gives an O∗(f(k))
time algorithm and vice versa. Note that the reductions have to preserve (the asymptotics
of) the function f but can alter polynomial factors hidden in the O∗ notation.

2 Iterative compression

In the last week’s problem set we have seen an algorithm for Vertex Cover using the
iterative compression technique. Now we will apply this technique to the Feedback Vertex
Set in Tournaments problem: given a tournament and an integer k, remove a set of at
most k vertices to make the tournament acyclic.

It would be enough to give an algorithm for the disjoint variant of the problem, but
let us recall the whole framework again, this time from the top to the bottom.

First, we need to make sure that if the graph admits a solution of size k, then so does
each of its (induced) subgraphs. This is the case, since the property of being acyclic is a
hereditary property (i.e. if a graph has it, each subgraph has it as well).

We start with arbitrary k + 2 vertices of the input graph. The induced subgraph
obviously has an FVS of size k. We will keep adding vertices one by one (in any order),
and we will try to maintain an FVS of size k. When we add a vertex to the subgraph, we
can also add it the FVS, and obtain an FVS of size k + 1 for the larger subgraph. Now,
we need to compress that FVS so that it is again of size k.

In the compression procedure, we first guess which vertices of the old-too-large FVS
will belong to the new-just-right FVS – there are 2k+1− 1 possible guesses, which we will
have to check. For each particular guess, we can remove the guessed vertices from the
graph (and decrease the budget k accordingly), and decide never to remove the remaining
vertices of the old-too-large FVS. Note that these “protected” vertices constitute an FVS
in the reduced graph. Here we arrive at the disjoint variant of the problem: given a
tournament T and an FVS F ⊆ T , find the smallest size of an FVS in T disjoint from F .

Let us solve the disjoint variant. Note that the subtournament induced by F has to
be acyclic – otherwise no solution exists – and hence it has a unique topological ordering.
Moreover, T \ F is also acyclic and has a unique topological ordering. Since T is a
tournament, each vertex v ∈ T \F either (1) has a unique “slot” s(v) ∈ [|F |+ 1] where it

2



Fine-Grained and Parameterized Complexity
Notes for March 11th, 2021

can possibly fit F , or (2) forms a cycle with F and thus has to be included in every FVS
disjoint from F . Let v1, v2, . . . be the unique topological ordering of case (1) vertices of
T \ F . Consider the sequence s(v1), s(v2), . . ..

Exercise 6. Show that any (weakly) increasing subsequence of the above sequence, to-
gether with the case (2) vertices, corresponds to an FVS in T disjoint from F and vice
versa.

Exercise 7. Show how to solve the Longest (Weakly) Increasing Subsequence problem
in quadratic time. Hint: design a dynamic program, or reduce to the Longest Common
Subsequence problem for the initial sequence and its sorted copy. Remark: Longest
Increasing Subsequence can be solved in O(n log n) time with a slightly more complex
algorithm.

To conclude, we solve the Disjoint FVS in Tournaments problem in polynomial time,
and, as a consequence, the FVS in Tournament problem in O∗(2k) time.

Disjoint variant in FPT time. So far we have seen examples of the iterative com-
pression technique for problems which admit polynomial time algorithms for their disjoint
versions. That is not always the case. For examples, for FVS in general undirected graphs,
the best known algorithms for the disjoint variant of the problem run in time of the form
O∗(ck), for a constant c.

Exercise 8. Given access to an O∗(ck) time algorithm for Disjoint FVS, solve FVS in
O∗((c+ 1)k) time.

3 Treewidth

Treewidth is a graph parameter often used in FPT algorithms. At first the parameter
might seem unintuitive, so let’s build some intuition.

Definition. For an undirected graph G = (V,E), its tree decomposition is a tree T with
the following properties. Each tree node t ∈ T is associated with a subset of vertices
Bt ⊆ V , which we call a bag of t. For each edge (u, v) ∈ E there must exist a node t ∈ T
whose bag contains both both ends of the edge, i.e. {u, v} ⊆ Bt. Moreover, for each vertex
v ∈ V , bags containing v must form a connected subgraph of T .

The treewidth of a graph is the smallest integer w such that the graph has a tree
decomposition with all bags containing at most w + 1 vertices.

Properties.

Exercise 9. Prove that trees have treewidth 1.

Exercise 10. What are the treewidths of: a cycle Cn, a complete graph Kn, a complete
bipartite graph Kn,n?

Exercise 11. Prove that adding a vertex to a graph can increase its treewidth by at most
one, and subdividing an edge cannot increase the treewidth.

3



Fine-Grained and Parameterized Complexity
Notes for March 11th, 2021

Exercise 12. Prove that if a graph has minimum degree d then it has treewidth at least
d.

Exercise 13. Prove that every clique of a graph has to be contained in some bag of its
tree decomposition.

A coloring number (also called degeneracy number) of a graph is the smallest integer
δ such that the vertices of the graph can be ordered in such a way that each vertex has
at most δ neighbors appearing before it in the order.

Exercise 14. Prove that graphs of treewidth k have coloring number at least k.

A graph is outerplanar if it can be embedded in the plane in such a way that all
vertices are on the outer face.

Exercise 15. Prove that outerplanar graphs have treewidth at most 2.

An alternative definition. A graph is a k-tree if it can be obtained from the following
process. We start with a clique on k vertices. Iteratively, we add a vertex to the graph
and connect it with some k existing vertices which form a clique.

Exercise 16. Prove that a k-tree has treewidth exactly k.

Exercise 17. Prove that every graph of treewidth k is a subgraph of some k-tree.

Vertex Cover parameterized by treewidth. One of the reasons why treewidth is
useful is that usually a dynamic programming algorithm working for trees can be gener-
alized to work for graphs of bounded treewidth.

Exercise 18. Propose a 2O(w)n time algorithm for the Vertex Cover problem in graphs
of treewidth at most w. Hint: for t ∈ T and X ⊂ Bt let dp[t][A] denote the size of the
smallest vertex cover of the subgraph induced by vertices appearing in bags below t such
that the vertex cover contains A.

4


