“Problem X is NP-complete” – What does it mean?

Definition: X is in NP (=has efficient certificate system), and any other problem from NP can be reduced to X in polynomial time (with a Karp reduction a.k.a. many-one reduction)

Corollary: If X can be solved in polynomial time, every problem from NP can be solved in polynomial time (This is just a corollary, not an equivalent definition, see Karp vs Turing reductions)

You can earn $1M if you solve X in polynomial time (There are probably easier ways to earn $1M, e.g. become a football player)
“P = fast and NP-complete = slow” – Why so popular?

For natural problems, if in poly time, it is low deg poly

Computers will probably never run exp time algorithms in reasonable time

Many hard natural problems are NP-complete, hence proving NP-completeness allows easy comparison with them

Clean definition of the class and reductions

Machine-independent, i.e. poly in Turing machine = poly in RAM model

Composable, i.e. poly(poly) = poly
“P = fast and NP-complete = slow” – Why too simplistic?

O(n^{100}) is poly time but not fast

O(n^2) is not fast if n=10^9

There may be faster-than-brute-force, subexponential time (e.g. $2^{O(\sqrt{n})}$) algorithms for NP-complete problems

There may be fast approximation algorithms for NP-complete problems
Two ways out

FPT

Add more parameters!

“Maybe VC requires $2^{o(n)}$ time in general, but you can solve it in $O(2^w n)$ time on graphs with treewidth w”

Algorithmic techniques

FGC

Look closer at a parameter!

“You can solve LCS in $O(n^2)$ but not in $O(n^{1.99})$ time (unless bad things happen)”

Connections between problems
“If SAT needs 2^n time, LCS needs n^2 time” – Conclusions?

Pessimistic: LCS needs n^2 time

Optimistic: Let’s improve LCS, we’ll get an improvement for SAT for free

Realistic(?): Let’s first improve SAT, then we’ll work on LCS (it’s no easier)

Agnostic: SAT and LCS are related
BAR FIGHT PREVENTION

\[V = \{ v_1, v_2, \ldots, v_n \} \]

\[E = \{ \{ v_i, v_j \} \mid i \neq j \} \]

Out: Find a subset of \(V \) of size \(k \) s.t.

\[2^n \text{ very naive } \quad 10^{30} \quad n=1000, \quad k=10 \]

\[\binom{n}{k} \quad \text{ naive } \quad 10^{23} \]

\[\binom{2^k}{k} \text{ poly-time kernel } + \text{ naive } 10^{16} \]

\[2^k(n+m) \text{ bounded search tree } 10^4 \]

\(m \leq n \cdot k \)

Kernelization

\[R_1 \text{ deg}=0 \rightarrow \text{ accept} \]

\[R_2 \text{ deg}>k \rightarrow \text{ refuse} \]

Apply rules exhaustively. Then \(V \); degi:

Claim: \(|E'| \leq k^2 \) if yes-instance

\[R_3 \text{ if } |E'| > k^2, \text{ answer NO.} \]

\[\exists \text{ deg}=2|E'| \leq 2k^2 \rightarrow |V'| \leq 2k^2 \]
If a problem P admits an alg in $f(k) \cdot \text{poly}(n)$, we say P is fixed parameter tractable (with respect to parameter k)

If $n^{f(k)}$ is slicewise polynomial (XP) $O(n^k) = O(n^k)$

$p \leq \text{FPT} \leq \text{XP}$

Def: $O^*(f(k)) = O(f(k) \cdot \text{poly}(n))$

E.g.: $3^k n^2$ is in $O^*(3^k)$
Kernelization algorithm

Input: \((I, k)\)
Output: \((I', k')\) or YES or NO

- polynomial time (in \(|I|\))
- \((I', k')\) is a YES-instance iff \((I, k)\) is a YES-instance
- \(|I'| + k' \leq f(k)\) \(\forall f\) has to be computable

Kernel \rightarrow FPT

FPT \rightarrow Kernel \ \ ? \ \ f(k) \cdot n^c \ - \ algorithm

simulate it for \(n^{c+1}\) time

\(f(k) > n\)

We care about polynomial kernels \((|I'| + k' \leq \text{poly}(k))\)