

Problem 1. Given a graph G, its vertex cover W, and an integer k, the Disjoint Vertex Cover problem asks if there exists a vertex cover of G disjoint from W of size at most k. Show a polynomial time algorithm for this problem.

Problem 2. Given a graph G and its vertex cover Z of size k, the Vertex Cover Compression problem asks if there exists a vertex cover of G of size k - 1. Show an $\mathcal{O}^*(2^k)$ time algorithm for this problem. Hint: Call a Disjoint Vertex Cover algorithm 2^k times.

Problem 3. Solve Vertex Cover in $\mathcal{O}^*(2^k)$ time by calling a $\mathcal{O}^*(2^k)$ time algorithm for Vertex Cover Compression n-k times. Hint: Start with a k-vertex subgraph of the input graph.

Problem 4. Recall the $2k^2$ kernel for Vertex Cover from the last class. It starts with exhaustively applying two rules: (1) if there is a vertex of degree 0, remove it; (2) if there is a vertex of degree greater than k, remove it and decrease k by one. Think of another rule that can let us get rid of vertices of degree 1. What is the size of the improved kernel?

Problem 5. Show a kernel with $\mathcal{O}(k^2)$ vertices for Cluster Editing. Hint: use the following three reduction rules.

- 1. If a vertex is not part of any P_3 (induced path on three vertices), delete it.
- 2. If an edge is a part of more than $k P_3$'s, delete it and decrease k by one.
- 3. If a non-edge is a part of more than $k P_3$'s, add it and decrease k by one.

Problem 6. Given a 2-CNF formula and an integer k, the Min-2-CNF-SET problem asks to find an assignment which satisfies at most k clauses. Show an $\mathcal{O}^*(2^k)$ time algorithm for this problem.

Problem 7. In the class we defined a problem to be FPT if it admits an $f(k) \cdot n^c$ time algorithm. Show that if we changed the bound to $f(k) + n^c$ we would get an equivalent definition.

Problem 8. Show that an $O((\log n)^k \cdot n)$ time algorithm is an FPT algorithm.

This problem set adds 3 points to the threshold for grade 4.0, and 6 points for 6.0