Graph theory - problem set 12

December 12, 2019

- 1. Calculate the eigenvalues and eigenvectors of the adjacency matrix of C_4 .
- 2. (a) Let G be a graph, and let k be a positive integer. Prove that for every $x, y \in V(G)$, $A_G^k(x, y)$ is equal to the number of walks of length k in G with endpoints x and y.
 - (b) Let G be a graph on n vertices and let $\lambda_1, ..., \lambda_n$ be all the eigenvalues of A_G . Show that

$$\sum_{i=1}^{n} \lambda_i^2 = 2|E(G)|.$$

- 3. Let G be a graph that is $\operatorname{sgr}(n,d,\lambda,\mu)$. Calculate n as a function of d,λ and μ .
- 4. Let G be a d-regular graph. Prove that if λ is an eigenvalue of A_G , then $|\lambda| \leq d$.
- 5. Let G be a bipartite graph. Prove that if λ is an eigenvalue of A_G , then $-\lambda$ is also an eigenvalue.
- 6. Let G be a graph and let p be the number of positive eigenvalues of A_G (with multiplicity), and let n be the number of negative eigenvalues of A_G (with multiplicity). Prove that the edge set of G cannot be partitioned into fewer than $\max(p, n)$ complete bipartite graphs.
- 7. Let G be a graph that is $\operatorname{sgr}(n,d,\lambda,\mu)$. Calculate the eigenvalues of A_G as a function of n,d,λ,μ .