1. Determine the edge-chromatic number of the graph below.

2. (a) Find the edge-chromatic number of K_{2n+1} (don’t use Vizing’s theorem).
 (b) Find the edge-chromatic number of K_{2n}.

3. Let G be a 3-regular graph with $\chi'(G) = 4$. Prove that G does not have a Hamilton cycle.

4. Prove that every bipartite graph satisfies $\chi'(G) = \Delta(G)$.

5. Deduce the undirected version of Menger’s theorem from the directed version.

6. Let G be a k-connected graph. Show using the definitions that if G' is obtained from G by adding a new vertex V adjacent to at least k vertices of G, then G' is k-connected.

7. Prove that a graph G on at least $k + 1$ vertices is k-connected if and only if $G - X$ is connected for every vertex set X of size $k - 1$.

8. Prove the following variants of Menger’s theorem. Let G be a graph and let S,T be disjoint vertex sets. An S-T path is a path with one endpoint in S and the other in T. Then:
 (a) The maximum number of edge-disjoint S-T paths equals the min size of an S-T edge separator.
 (b) [fan lemma]: If G is k-connected, then for every s and every T of size at least k, there are k vertex-disjoint s-T paths (except at s).
 (c) If $|S|,|T| \geq k$ and there is no S-T separator of size $k - 1$, then G contains k vertex disjoint S-T paths.
 (An S-T separator $X \subseteq V(G)$ is a set such that $G - X$ has no path between $S \setminus X$ and $T \setminus X$.)

9. Let G be a connected graph with all degrees even. Show that G is 2-edge-connected.

10. Prove that G is 2-connected if and only if for any three vertices x,y,z there is a path in G from x to z containing y.