Graph theory - problem set 5

October 16, 2019

1. Find a maximum matching in the following graph.

- 2. Construct a 2-regular graph without a perfect matching.
- 3. Construct preference lists for the vertices of $K_{3,3}$ so that there are multiple stable matchings.
- 4. The Gale-Shapley algorithm produces stable matchings on complete bipartite graphs. Consider now complete graphs on an even number of vertices. Are all matchings stable?
- 5. Describe an algorithm for finding a maximum cardinality matching in a bipartite graph.
- 6. Show that if $G = (A \cup B, E)$ is a bipartite graph such that $|N(S)| \ge |S| d$ holds for every $S \subseteq A$, then G has a matching with at least |A| d edges.
- 7. An $r \times s$ Latin rectangle is an $r \times s$ matrix A with entries in $\{1, \ldots, s\}$ such that each integer occurs at most once in each row and at most once in each column. An $s \times s$ Latin rectangle is called a Latin square. Prove that every $r \times s$ Latin rectangle can be extended to an $s \times s$ Latin square.
- 8. Let G be a bipartite graph with parts of size 2n and minimum degree at least n. Prove that G has a perfect matching.
- 9. Give a graph-theoretic proof of the following statement: if there exist injections $f: A \to B$, $g: B \to A$ between infinite sets A and B, then there exists a bijection $h: A \to B$.