The problem can be submitted until Mai 31, 12:00 noon, into the box in front of MA C1 563 (Attention: There is no exercise session in this week).

 $Student(s)^1:$

Question 1: The question is worth 5 points.

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4 \ \square \ 5$ Reserved for the corrector

Definition: For a directed graph G = (V, A) with weight function $\ell : A \to \mathbb{R}$, we define a potential function to be a function $d : V \to \mathbb{R}$. The reduced weight $\ell_d : A \to \mathbb{R}$ corresponding to d is given by:

$$\ell_d(u,v) = \ell(u,v) + d(u) - d(v)$$

for all $(u, v) \in A$.

Let G = (V, A) be a directed graph with weight function $\ell : A \to \mathbb{R}$ and suppose that G has no negative cycles.

- 1. Let P be a shortest path between s and t with respect to ℓ . Show that for each potential function, P is also a shortest path between s and t in respect to the reduced weights.
- 2. Show that there exists a potential function d^+ such that all reduced weights are ≥ 0 .

^{1.} You are allowed to submit your solutions in groups of at most three students.

Sol.:

1. Let P' be a path in G. The weight of P' is the sum of the weight over all its arcs. Calculate:

$$\ell_d(P') = \sum_{(u,v)\in P'} \ell_d(u,v) = \sum_{(u,v)\in P'} [\ell(u,v) + d(u) - d(v)]$$

Expanding this sum gives:

$$\ell_d(P') = \sum_{(u,v) \in P'} \ell(u,v) + d(u_0) - d(u_k) = \ell(P') + d(u_0) - d(u_k)$$

Where u_0 is the first and u_k the last vertex of P'.

Suppose that P is a shortest path between s and t in respect to ℓ . For each path P' between s and t, we have $\ell(P') > \ell(P)$ by definition of P. Thus we get :

$$\ell_d(P') = \ell(P') + d(s) - d(t) \ge \ell(P) + d(s) - d(t) = \ell_d(P)$$

This implies that P is also a shortest path between s and t with respect to the reduced weight ℓ_d .

2. By splitting the graph in components, we may assume that there exists a vertex s from which each other vertex can be reached. Since the graph has no negative cycles, we can calculate the shortest paths from s to each other vertex. Define $d^+(v)$ to be the shortest distance from s to v. We want to show that $\ell_{d^+}(u,v) \geq 0$ for all arcs $(u,v) \in A$.

Consider $(u, v) \in A$, we know that $d^+(u)$ is the shortest distance from s to u. Since (u, v) is an arc in G, the shortest distance between s and v is $\leq d^+(u) + \ell(u, v)$. This gives the inequality:

$$d^+(v) \le d^+(u) + \ell(u, v)$$

Rearranging gives:

$$0 \le \ell(u, v) + d^{+}(u) - d^{+}(v) = \ell_{d^{+}}(u, v)$$

Where the equation is by definition of ℓ_{d^+} .