Problem 1

Given n numbers a_1, \ldots, a_n find indices i and j, $1 \leq i \leq j \leq n$, such that $\sum_{k=i}^j a_k$ is minimized.

We will develop two algorithms for this problem that run in linear time, i.e., the number of (arithmetic) operations is linear in n.

(a) Solve the problem using Bellman-Ford as a subroutine. In particular, construct a graph such that a shortest path in this graph yields the optimal solution to the above problem. Show that the graph can be generated in linear time and that Bellman-Ford can be implemented to run in linear time on this graph.

(b) Define $d(j) = \min_{1 \leq i \leq j} \sum_{k=i}^j a_k$. Conclude that the above problem is equivalent to computing $\min_{1 \leq j \leq n} d(j)$. Show how this can be done in linear time.

Solution:

(a) Consider the graph in Figure 1(a). The shortest path between s and t gives the respective result. Clearly, this graph is acyclic and it has $O(n)$ edges so by Problem 4, one can compute the shortest $s - t$ path in $O(n)$ operations.

If there is at least one negative number, we can also consider the simpler graph in Figure 1(b). Note that instances with only non-negative numbers are not very interesting. Then, the solution is $i = j$ where a_i is the smallest number.

(b) It is easy to see that $d(j + 1) = \min \{d(j) + a_{j+1}, a_{j+1}\}$. Setting $d(1) = a_1$ we can thus compute $d(2), \ldots, d(n)$ subsequently. Each successor computation takes constant time, hence the total computation takes $O(n)$ time.

The optimal pair (i, j) sums the numbers from a_i to a_j. Hence, this sequence ends at j and the value of $d(j) = \sum_{k=i}^j a_k$. Thus, after computing the values of d we can select the minimum value of the values in d which yields the optimal value. Again, this can be done in linear time.

Problem 2

Due to the decentralized nature of the global currency market, it might be the case that an individual or an organized group makes a large profit without risk. Arbitrage is a phenomenon that refers
to cases when it is possible to convert one unit of a currency into more than one unit of the same currency by using discrepancy in exchange rates. For example, consider the case that 1 CHF buys 60 RUB, 1 RUB buys 0.019 USD and 1 USD buys 0.93 CHF. This means that a trader can transform 1 CHF into $60 \cdot 0.019 \cdot 0.93 = 1.0602$ CHF gaining a profit of 6.02%.

Given a list of currencies r_1, \ldots, r_n and a matrix $E \in \mathbb{R}_{>0}^{n \times n}$ where $E_{i,j}$ specifies the exchange rate between currencies r_i and r_j, design a polynomial time algorithm to test if there is a possibility of arbitrage. While modelling the problem, bear in mind that testing if a weighted directed graph has a negative cycle can be done in polynomial time.

Solution:

Observe that in the case of arbitrage one makes a circular sequence of trades $t \in T$. The profit has been obtained in the case when the product of the corresponding exchange rates

$$\prod_{t \in T} E_{i(t),j(t)} > 1 \iff \prod_{t \in T} \frac{1}{E_{i(t),j(t)}} < 1 \iff \sum_{t \in T} \log \left(\frac{1}{E_{i(t),j(t)}} \right) < 0,$$

where $i(t)$ indicates the index of the currency sold in transaction t and $j(t)$ is the index of the currency bought.

The above statement suggests the following natural construction. Let $G = (V,E)$ be a complete directed graph with the set of nodes $V = r_1, \ldots, r_n$. For each arc $(r_i, r_j) \in E$ set the weight $w_{i,j} = \log \left(\frac{1}{E_{i,j}} \right)$. The (possibly empty) set of arbitrages is in one-to-one correspondence with the set of negative-weight directed cycles on G. Existence of a negative cycle can be detected by running n iterations of the Bellman-Ford algorithm. Such a cycle exists if and only if the distance matrix gets updated in the nth iteration as mentioned in class. It can be reconstructed by using the list of predecessors maintained by the algorithm.

Problem 3

Let $D = (V,A)$ be a directed graph, $w : A \to \mathbb{R}$ be arc weights and $s \in V$. Suppose that there exists a path from s to each other node of V.

Consider the following linear program:

$$\begin{align*}
\max & \quad \sum_{v \in V \setminus \{s\}} x_v \\
\text{s.t.} & \quad x_v - x_u \leq w(u,v), \quad \forall (u,v) \in A \\
& \quad x_s \leq 0.
\end{align*}$$

(1)

Show the following:

a) This LP is feasible if and only if D has no negative cycle;

b) If D has no negative cycle, then (1) has a unique optimal solution.

Solution:

For each $v \in V$, denote with $d(s,v)$ the length of the shortest path from s to v in D, subject to w.

a) (\Leftarrow) If there are no negative cycles in D, then we have for each $(u,v) \in A$:

$$d(s,v) \leq d(s,u) + w(u,v) \Leftrightarrow d(s,v) - d(s,u) \leq w(u,v).$$

Thus, the assignment $x_v^* = d(s,v), \forall v \in V$ with $x_s^* = 0$ is feasible for (1).

(\Rightarrow) Let \bar{x} be a feasible solution to (1) and let C be a directed cycle in D, denote its length with $w(C)$. One has:

$$w(C) = \sum_{(u,v) \in C} w(u,v) \geq \sum_{(u,v) \in C} (\bar{x}_v - \bar{x}_u) = 0.$$
The last equality comes from the fact that every vertex contained in C arises in the summation exactly twice, once with the positive and once with the negative sign.

b) Consider an arbitrary vertex $v \in V$ and let $s = u_0 \to u_1 \to \cdots \to u_k = v$ be a shortest length path from s to v, subject to w. By adding up the constraints $x_{u_1} - x_k \leq w(s, u_1)$ and $x_s \leq 0$ we obtain that $x_{u_1} \leq w(s, u_1)$ is valid for (1). Further adding $x_{u_2} - x_{u_1} \leq w(u_1, u_2)$ gives $x_{u_2} \leq w(s, u_1) + w(u_1, u_2)$. If we continue the process in the same manner, then we have that

$$x_v \leq \sum_{i=1}^{k} w(u_{i-1}, u_i) = d(s, v)$$

For each $v \in V$, this inequality has to be satisfied by every feasible solution of (1). Thus, the maximum of $\sum_{v \in V \setminus \{s\}} x_v$ is uniquely attained by the solution

$$x_v^* = d(s, v), \quad \forall v \in V \setminus \{s\}.$$

Note that, if there is no negative cycle in D, there has to be an (outgoing) arc $(s, v) \in A$ such that $d(s, v) = w(s, v)$. Therefore, $x_v^* \geq x_v^* - w(s, v) = 0$, and by $x_v^* \leq 0$ one gets $x_v^* = 0$. As seen in part (a), the solution x^* is feasible for (1).

Problem 4

Design an algorithm that, a directed graph $G = (V, A)$, finds the number of shortest paths from s to t in time $O(|V| + |A|)$.

Solution:

We will modify the breadth-first search algorithm in a way that it also counts the number of shortest paths from s to any other vertex. This is done by inheriting the number of paths from the predecessor and updating this number if other paths of the same length are found.

More formally: keep the initialization for the queue Q, the distance array D and the predecessor array π. Further, add an array p storing the number of paths to each node and initialize $p = [1, 0, \ldots, 0]$.

while $Q \neq \emptyset$ do

$\quad u := \text{head}(Q)$

for each $v \in \delta^+(u)$ do

\quad if $D[v] = \infty$ then

$\quad \quad \pi[v] := u$

$\quad \quad D[v] := D[u] + 1$

$\quad \quad p[v] := p[u]$

$\quad \quad \text{enqueue}(Q, v)$

\quad else if $D[v] = D[u] + 1$ then

$\quad \quad p[v] := p[v] + p[u]$

$\quad \quad \text{dequeue}(Q)$

As seen in class, the algorithm finds all shortest paths from s. Since each shortest path from s to v goes through exactly one vertex in $\delta^-(v)$, the number of shortest paths from s to v is exactly the sum of the number of paths of length $D[v] - 1$ from s to a vertex in $\delta^-(v)$. Note that there will never be a path of length $\leq D[v] - 1$ from s to a vertex in $\delta^-(v)$, otherwise $D[v]$ would not be the length of the shortest path from s to v. Thus for each $u \in \delta^-(v)$, the number of paths of length $D[v] - 1$ is either 0 or $p[v]$.

Since we add only a constant number of calculations in each iteration to the breath-first search algorithm the running time remains $O(|V| + |A|)$.
Problem 5
A 2-matching in a graph is a collection of disjoint cycles that covers all the vertices. Show that a 2-matching can be computed in polynomial time, if such one exists. Note that it is allowed to pick an edge twice in a 2-matching, i.e., one can have a 2-cycle.

Hint: One may reduce the problem to finding a perfect matching in a bipartite graph.

Solution:
Given the initial graph $G(V, E)$, construct a bipartite graph $G' = (V \cup V', E')$, where V' is a copy of V and E' has the edges $\{u, v'\}$ and $\{u', v\}$ for each edge $\{u, v\} \in E$.

Now, every 2-matching M_2 in G corresponds to a perfect matching M' in G'. For every cycle v_1, \ldots, v_k in M_2 put the edges $(v_1, v'_2), \ldots, (v_{k-1}, v'_k), (v_k, v'_1)$ in M'. Clearly, M' matches all the vertices $v_1, \ldots, v_k, v'_1, \ldots, v'_k$. Doing this for all cycles in matching M_2 of G yields the corresponding perfect matching M' of G'.

Conversely, if there is a perfect matching M' in G', we can construct a 2-matching M_2 in G. For each of edges $\{u, v'\}$ and $\{u', v\}$ in M', we add the edge $\{u, v\}$ to M_2. A perfect matching in G' can be computed, or it can be detected that there is no such matching, in polynomial time.