Problem 1

In an unweighted graph (i.e., where all edges are of the unit weight) the shortest path from \(s\) to all other vertices can be computed by using the breadth-first search (BFS) algorithm. Apply it to the graph below.

![Graph](image)

Consider each iteration of the BFS (i.e. each time when a new vertex is taken from the head of the queue). Note which vertex has been currently processed, the distance labels and the snapshot of the queue at the end of the iteration.

Solution:

Distance labels will be denoted as a list of \([D[s], D[v_1], \ldots, D[v_7]]\).

<table>
<thead>
<tr>
<th>iteration</th>
<th>vertex</th>
<th>processed neighbors</th>
<th>distance labels</th>
<th>queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(s)</td>
<td>(v_1, v_2, v_3)</td>
<td>0 (\infty) (\infty) (\infty) (\infty) (\infty) (\infty) (\infty)</td>
<td>({s})</td>
</tr>
<tr>
<td>2</td>
<td>(v_1)</td>
<td>(v_7)</td>
<td>0 1 1 1 (\infty) (\infty) (\infty) (\infty) 2</td>
<td>(v_1, v_2, v_3)</td>
</tr>
<tr>
<td>3</td>
<td>(v_2)</td>
<td>(v_4)</td>
<td>0 1 1 1 2 (\infty) (\infty) 2</td>
<td>(v_3, v_7, v_4)</td>
</tr>
<tr>
<td>4</td>
<td>(v_3)</td>
<td>(v_5)</td>
<td>0 1 1 1 2 2 (\infty) 2</td>
<td>(v_7, v_4, v_5)</td>
</tr>
<tr>
<td>5</td>
<td>(v_7)</td>
<td></td>
<td>0 1 1 1 2 2 (\infty) 2</td>
<td>(v_4, v_5)</td>
</tr>
<tr>
<td>6</td>
<td>(v_4)</td>
<td></td>
<td>0 1 1 1 2 2 (\infty) 2</td>
<td>(v_5)</td>
</tr>
<tr>
<td>7</td>
<td>(v_5)</td>
<td></td>
<td>0 1 1 1 2 2 (\infty) 2</td>
<td></td>
</tr>
</tbody>
</table>

Problem 2

There are \(n\) types of animals, and you want to assign them to two stables. Unfortunately, some animals would eat other animals when left unattended. Therefore you need to assign the animals carefully. There are \(m\) relations of the form “\(u\) eats \(v\)”, where \(u\) and \(v\) are animals.

Find an \(O(n + m)\) algorithm that decides whether there is an assignment of animals to the two stables such that no animal eats another one of the same stable, and outputs a feasible assignment.
Hint: Observe that the problem is equivalent to checking if the underlying (undirected) graph $G = (V, E)$ is bipartite.

Solution:
Consider the underlying undirected graph $G = (V, E)$, where each node in V corresponds to an animal, and there is an edge $\{u, v\} \in E$ if "u eats v" or "v eats u". Observe that there exists a feasible assignment of the animals to the two stables is if and only if there is a partition of V into sets V_1 and V_2 such that for each $\{u, v\} \in E$ either $u \in V_1$, $v \in V_2$ or $v \in V_1$, $u \in V_2$, i.e, if and only if G is a bipartite graph.

We will extend the BFS algorithm to obtain a routine for checking if a given graph is bipartite, and prove the correctness of this routine. In the case of the positive answer, we will show how to construct a bipartition.

Consider the following algorithm:

1: function FULLBFS($G = (V, E)$)
2: $D[v] \leftarrow \infty \forall v \in V$.
3: for all $v \in V$ do
4: if $D[v] = \infty$ then
5: $D[v] \leftarrow 0$
6: BFS(G, v, D)
7: end if
8: end for
9: return D

We run this algorithm on the graph G. Let D be the output. We define

$$V_1 := \{v \in V : D[v] \text{ is odd}\}$$

and

$$V_2 := \{v \in V : D[v] \text{ is even}\}.$$

We say that the assignment given by $V_1 \cup V_2$ is a feasible solution to our problem if and only if there is no edge $e \in E$ such that $e \subseteq V_1$ or $e \subseteq V_2$. With the observation from above, it is sufficient to show that $V_1 \cup V_2$ is feasible if and only if G is bipartite.

Trivially if $V_1 \cup V_2$ is feasible, then G is bipartite, since V_1 and V_2 give a bipartition of the nodes.

Now assume that $V_1 \cup V_2$ is infeasible, i.e. there is an edge $e \in E$ such that $e \subseteq V_1$ (or $e \subseteq V_2$. In the latter case we swap the roles of V_1 and V_2). We need to show that G is not bipartite. For that matter, it is sufficient to show that G contains an odd cycle.

Let $e = \{u, w\}$. Hence w is reachable from u and vice versa. Hence, u and w got their D-label assigned in the same run of BFS in Line 6. Thus there is a node v such that there is a v, u-path P of length $D[u]$ and a v, w-path P' of length $D[w]$. Since u and w both belong to V_1, we have $D[u] \equiv D[w] \mod 2$, and therefore $D[u] + D[w]$ is even.

Consider the shortest path three (seen in class) of the BFS algorithm run on the vertex v. Both P and P' start in v and there is a unique vertex v' after which they split (it might be that $v = v'$). Let $P_{v' - u}$ be the portion of P from v' to u and analogously $P'_{v' - w}$ a portion of P' from v' to w. The number of edges in the union of $P_{v' - u}$ and $P'_{v' - w}$ is $D[u] - D[v'] + D[w] - D[v']$, so it is even. Moreover e is contained in neither P nor P' (otherwise the algorithm would not have assigned u and w to the same V_i).

We conclude that the union of $P_{v' - u}$, $P'_{v' - w}$ and e is an odd cycle in G.

Problem 3

Consider a directed graph $D = (V, A)$ with n vertices and m arcs. A topological sort of the vertices is a total ordering on V such that there is no arc $(u, v) \in D$ such that $u > v$, i.e, such that u is placed after v in the ordering.
Formulate an \(O(m+n)\) algorithm that finds a topological sort of the vertices or decides that there is a directed cycle in \(G\).

Solution:

Consider the following algorithm. Iterate through every vertex \(v \in V\) and find a vertex that has zero indegree. If no such vertex exists we know that the graph has a directed cycle: construct a chain of \(n + 1\) vertices starting at an arbitrary vertex and following the incoming arcs. Since there are only \(n\) vertices, by pigeon hole principle, we know that there is one vertex that appeared twice. The part of the chain between two of the vertex's occurrences constitutes a directed cycle.

Once, we have found a vertex \(v\) with zero indegree, put this vertex first in the ordering and delete it from the graph. Then, recurse on the reduced graph. Clearly, this yields a feasible topological ordering.

Let us consider the running time of this algorithm. Checking if a given vertex has zero indegree can be done in constant time. Hence, finding a vertex with zero indegree can be done in \(O(n)\) time. Deleting a vertex from the graph can be done in constant time. Since one vertex is deleted from the graph in each iteration, the number of iterations is \(n\). Hence, the total running time is \(O(n^2)\).

But, we can speed up this process to arrive at an \(O(n + m)\) algorithm by speeding up the time it takes to find a vertex with indegree zero.

Let \(S \subseteq V\) be the set of vertices with indegree zero. We can find all \(v \in S\) by scanning once through the set of vertices in \(O(n)\) time. Then, in each iteration, one element \(v\) is taken from \(S\) and becomes the next element of the ordering. The only vertices that change their indegree when deleting \(v\) are the neighbors of \(v\). Hence, when deleting \(v\) we check all of \(v\)'s neighbors if they have zero indegree and if so, put them in \(S\). The number of vertices that we check is the number of outgoing edges of \(v\). Hence, there is an \(O(n)\) preprocessing step to find the initial set of zero indegree vertices. Then, there is \(n\) iterations and the total number of degree checks in all iterations is the number of edges \(m\). Therefore, the running time is \(O(n + m)\).

Problem 4

Let \(D = (V, A)\) be a directed acyclic graph, i.e., there exists no directed cycle in \(D\), and let \(w : A \rightarrow \mathbb{R}\) be arc weights. Assume that you are given a topological sort of the vertices. Show how the above ordering can be used to compute single-source shortest paths, with respect to \(w\), in \(O(m)\) arithmetic operations.

Solution:

One can compute a topological sort on the vertices as in Problem 3 if there are no negative cycles. Let \(s \in V\) be the vertex that we want to compute the shortest paths from. Consider the vertices in the order of the topological sort, starting from \(s\). For each vertex, relax all its outgoing edges. That means if we consider \(v \in V\), then for all \((v, u) \in A\) set \(d(u) = \min\{d(u), d(v) + w(v, u)\}\). Recall that there are no edges from \(v\) to \(u\) if \(u\) proceeds \(v\) in the ordering. Thus, the vertices on any path starting from \(s\) obey the ordering. Hence, the sizes of the shortest paths are found by considering each arc at most once.

Problem 5

Let \(T = (V, E)\) be an undirected tree. Find an algorithm which in time \(O(|V|)\) finds the longest distance between any two vertices in \(V\), i.e., \(\max_{u,v \in V} d(u,v)\).

Solution:

We traverse the tree \(T\) in a hierarchical manner, starting from an arbitrary node \(r \in V\) which we denote as the root of \(T\). Nodes in \(V \setminus \{r\}\) can be seen as descendants of \(r\) and nodes in \(N(r) = \{v \in V : \{r, v\} \in E\}\) as its children. Descendants of \(v \in N(r)\) form the subtree of \(T\) rooted at \(v\). Observe that there are two possible cases for a path in \(T\) which attains \(\max_{u,v \in V} d(u,v)\):
1. The path passes through r (Alg. line 15);

2. The path is completely contained in one of the subtrees rooted at children of r (Alg. line 12).

In terms of notation, we represent every path with the list its of vertices and the $+$ operator stands for joining two paths. For completeness, $[v]$ is considered to be a path of length 0.

1: pick arbitrary $v \in V$
2: $\text{visited} = \{v\}$
3: $\text{path, rpath} = \text{DFS}(T, v, \text{visited})$

4:
5: function DFS$(T, r, \text{visited})$
6: \hspace{1em} \text{path} = [r]
7: \hspace{1em} \text{rpath} = [r]
8: \hspace{2em} \text{while } \mathcal{N}(r) \setminus \text{visited} \neq \emptyset \text{ do}
9: \hspace{3em} \text{pick arbitrary } v \in \mathcal{N}(r) \setminus \text{visited}
10: \hspace{3em} \text{visited} = \text{visited} \cup \{v\}
11: \hspace{3em} \text{altpath, vpath} = \text{DFS}(T, v, \text{visited})
12: \hspace{3em} \text{if len(altpath)} > \text{len(path)} \text{ then}
13: \hspace{4em} \text{path} = \text{altpath}
14: \hspace{3em} \text{end if}
15: \hspace{3em} \text{if len(rpath + vpath)} > \text{len(path)} \text{ then}
16: \hspace{4em} \text{path} = \text{rpath + vpath}
17: \hspace{3em} \text{end if}
18: \hspace{3em} \text{if len(vpath + [r])} > \text{len(rpath)} \text{ then}
19: \hspace{4em} \text{rpath} = \text{vpath} + [r]
20: \hspace{3em} \text{end if}
21: \hspace{2em} \text{end while}
22: \text{return path, rpath}
23: \text{end function}

The path returned by DFS$(T, r, \text{visited})$ is the longest path in the subtree T_r of T rooted at r. List rpath stores the longest path from r to a leaf in T_r, i.e., to a descendant of r with no children. The correctness of the algorithm follows by induction on the number of vertices in T_r, denote it with n. If $n = 1$, then r is a leaf itself and the only node in T_r. Thus, $\text{path} = \text{rpath} = [r]$. For $n > 1$ we apply the inductive hypothesis depending on the above two cases.

The algorithm terminates visiting all the vertices in T. Observe that every vertex is visited exactly once and on each visit we perform three "if" statements. Inside those statements we perform the operation of joining two paths which can be implemented to run in constant time. Thus the total number of operations is $O(|V|)$.