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Série 12 - Corrigé

Exercice 1. Soit G =

(
a b
b c

)
∈ Z2×2 un matrice symétrique, unimodulaire, et définie

positive. Montrer qu’il existe une matrice unimodulaire U telle que G = UᵀU .

Remarque: L’énoncé est vrai jusqu’à la dimension 7, mais en dimension 8 il existe un
exemple où la décomposition n’est pas possible.

Solution. On note que a, c ≥ 1, car G est définie positive. De plus, par multiplication
de la seconde colonne et la seconde ligne par −1, on peut supposer que b ≥ 0. Nous
affirmons que si b ≥ min{a, c}, alors il existe une matrice unimodulaire telle que pour la
nouvelle matrice

G′ = UᵀGU =

(
a′ b′

b′ c′

)
,

on a 0 ≤ b′ < b. Comme b, b′ sont entiers, cette procédure se termine avec 0 ≤ b′ <
min{a′, c′}.

De plus, comme xᵀG′x = (xᵀUᵀ)G(Ux) = x′ᵀGx′, G′ est aussi définie positive et
a′, c′ > 0.

Supposons b ≥ a. En ajoutent la première colonne λ ∈ Z fois à la seconde colonne, et
en faisant la même chose pour les lignes, (multiplication par une matrice unimodulaire
U), nous obtenons

G′ = UᵀGU

=

(
a b− λa

b− λa c− 2λb+ λ2a

)
=

(
a b′

b′ c′

)
.

Si on choisit 1 ≤ λ = b b
a
c, on a 0 ≤ b′ < b. Si on a b ≥ c, nous ajoutons la seconde

colonne λ′ fois à la première colonne, respectivement ligne.
Nous obtenons une matrice G′ congrue a G avec 0 ≤ b < min{a, c}. Pour cette G′,

nous avons det(G′) = a′c′− b′2. Si b′ ≥ 1, ceci est det(G′) ≥ (b′ + 1)2− b′2 ≥ 2b′ + 1 > 1,
une contradiction. Donc, b′ = 0, ce qui implique a′ = c′ = 1, et alors G′ = In. Comme
nous avons seulement effectué opérations élémentaires unimodulaires sur les lignes et les
colonnes simultanément, il existe une matrcie unimodulaire telle que G = UᵀInU = UᵀU .
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Exercice 2. Montrer qu’un réseau entier Λ(A), pour une matrice A ∈ Zm×n de rang
ligne plein est un groupe abelien.

Solution. L’ensemble Zn est un sous-ensemble d’une espace vectoriel (qui est une groupe
abelien avec l’addition), et pour u, v ∈ Zn, le somme est définie par (u+v)i = ui +vi ∈ Z,
et o ∈ Zn. Alors, Zn est un (sous-)groupe. On a Λ(A) = {Az | z ∈ Zn}. Ce implique
que 0 = A0 ∈ Λ, car 0 ∈ Zn. Comme Λ(A) ⊆ Rn, on doit seulement montrer que
u + v ∈ Λ(A) pour u, v ∈ Λ(A). Pour chaque v ∈ Λ(A), on peut choisir zv ∈ Zn tel que
v = Azv.

u+ v = Azu + Azv = A (zu + zv)︸ ︷︷ ︸
∈Zn

∈ Λ(A).

Exercice 3. Montrer que pour chaque n, il y a une matrice A ∈ Zn×(n+1) avec colonnes
A = (a1, . . . , an+1) tel que les assertions suivantes sont vraies:

i) Pour chaque i ∈ {1, . . . , n + 1}, l’ensemble Ri = {a1, . . . , ai−1, ai+1, . . . , an+1}
forme une base d’espace vectoriel Rn.

ii) Aucune sous-matrice Ai, définie comme la matrice A sans la i-éme colonne, ne
génère le même réseau entier que A, c.-à-d. ∀Ai: Λ(A) 6= Λ(Ai), où

Λ(A) =

{
n+1∑
j=1

ajzj

∣∣∣∣∣ zj ∈ Z, j ∈ {1, . . . , n+ 1}

}

Λ(Aj) =

{
n+1∑

j=1, j 6=i

ajzj

∣∣∣∣∣ zj ∈ Z, j ∈ {1, . . . , n+ 1} \ {i}

}
.

Solution. Soit

A =


2 3 0 0

0 2 3
. . .

. . . . . . . . . 0
0 0 2 3

 ∈ Zn×(n+1).

Pour chaque i ∈ {1, . . . , n}, Λ(A) contient un vi tel que (vi)i est impaire. Le réseau entier
Λ(Ai+1) ne contient pas vi. Le réseau entier Λ(A1) ne contient pas a1. La suppression
de la k-ième colonne de la matrice A donne une matrice block-diagonale

A′ =

(
M1

M2

)
,

où M1 ∈ Z(k−1)×(k−1) est une matrice triangulaire supérieure avec entrées non-nulles, et
M2 ∈ Z(n−k+1)×(n−k+1) est une matrice triangulaire infèrieure avec entrées non-nulles.
Donc A′ est de rang plein et chaque Ak est une base de Rn.
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Exercice 4. Montrer que d dans le lemme 5.6 est le gcd de la première ligne de A. En
d’autres mots, montrer le lemme suivant.

Lemme. Soit A ∈ Zm×n une matrice en nombres entiers de plein ligne rang, alors il existe
une matrice unimodulaire U ∈ Zn×n, tel que la première ligne de AU est de la forme
(d, 0, . . . , 0) où d = gcd(a1,1, a1,2, . . . , a1,n).

Solution. Nous allons montrer que gcd(a1,1, . . . , a1,n) est invariant sous opérations élémentaires
unimoduilaires. L’échange de deux colonnes ne change pas le gcd. Ajouter λ ∈ Z fois une
colonne j dans une autre colonne k, j 6= k, change ak en a′k = ak + λaj pour quelqu’une
λ ∈ Z. Par exercices 1 et 5.ii) dans fiche 11, on a

gcd(a1,1, a1,2, . . . , a1,n)

= gcd(gcd(ak, aj), a1,1, a1,2, . . . , a1,n)

= gcd(gcd(ak + λaj, aj), a1,1, a1,2, . . . , a1,n)

= gcd(a1,1, a1,2, . . . , a
′
k, . . . , a1,n).

Donc, les opérations élémentaires unimodulaires ne changent pas le gcd d’une ligne.
Comme gcd(d, 0, . . . , 0) = d, nous avons gagné.

Exercice 5. Calculer la forme normale de Smith pour

A =


3 12 9 0 −3
4 1 0 1 1
7 3 21 0 8
7 6 4 5 2

 , B =


3 12 9 0 −3
4 1 0 1 1
5 −5 15 0 10
7 6 4 5 2


(Vous pouvez utiliser le fichier python sur la page web du cours.)

Solution. Le forme normale d’Hermite.

A1 =


3 0 0 0 0
0 1 0 0 0
2 0 5 0 0
0 0 0 1 0

 .
Échange les lignes 1 et 3, Hermite encore.

A2 =


1 0 0 0 0
0 1 0 0 0
9 0 15 0 0
0 0 0 1 0

 .

On soustrait 9-fois la ligne 1 à la ligne 3.

A3 =


1 0 0 0 0
0 1 0 0 0
0 0 15 0 0
0 0 0 1 0

 .
Échanger les lignes 3 et 4, et les colonnes 3
et 4, la forme normale de Smith est

A4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 15 0

 .
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Et pour la matrice B:

B1 =


3 0 0 0 0
0 1 0 0 0
0 0 5 0 0
0 0 0 1 0

 .
Ajouter la 3-ième ligne dans la première
ligne, Hermite encore.

B2 =


1 0 0 0 0
0 1 0 0 0
10 0 15 0 0
0 0 0 1 0

 .

On soustrait 10-fois la ligne 1 à la ligne 3.

B3 =


1 0 0 0 0
0 1 0 0 0
0 0 15 0 0
0 0 0 1 0

 .
Échanger les lignes 3 et 4, et les colonnes 3
et 4, la forme normale de Smith est

B4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 15 0

 .

Exercice 6. Soit G un groupe. Le centre de G est définie par Z(G) = {z ∈ G | zg =
gz ∀ g ∈ G}.

i) Montrer que Z(G) est un sous-groupe de G.

ii) Montrer que si G est abelien, alors Z(G) = G.

Solution.

1. Soit z1, z2 ∈ Z(G). Donc pour tout g ∈ G:

g(z1z
−1
2 ) = z1z

−1
2 z2gz

−1
2 = (z1z

−1
2 )gz2z

−1
2 = (z1z

−1
2 )g,

alors (z1z
−1
2 ) ∈ Z(G).

2. Si G est abelien, alors gz = zg pour tout z, g ∈ G. Donc, G = Z(G).

Exercice 7. Soit H un sous-groupe de G, tel que pour chaque a ∈ G, il y a un b ∈ G
avec aH = Hb. Montrer que H est un sous-groupe normal de G, H CG.

Solution. On doit montrer que aH = Ha pour tout a ∈ G. Pour a ∈ G, il existe des
éléments h, h′ ∈ H, b ∈ G tels que

ah = h′b

⇒ b = h′−1ah

⇒ aH = aHh−1

= Hbh−1

= Hh′−1ahh−1

= Ha.

Exercice 8. Soit N CG et K CG. Montrer que N ∩K CG.

Solution. a(N ∩ K)a−1 ⊆ aNa−1 = N et a(N ∩ K)a−1 ⊆ aKa−1 = K. Donc a(N ∩
K)a−1 ⊆ N ∩K pour tout a ∈ G, et N ∩K CG.
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