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Série 12 - Corrigé

Exercice 1. Soit G = <Z . € 7Z2*% un matrice symétrique, unimodulaire, et définie

positive. Montrer qu’il existe une matrice unimodulaire U telle que G = UTU.

Remarque: L’énoncé est vrai jusqu’a la dimension 7, mais en dimension 8 il existe un
exemple ou la décomposition n’est pas possible.

Solution. On note que a,c > 1, car G est définie positive. De plus, par multiplication
de la seconde colonne et la seconde ligne par —1, on peut supposer que b > 0. Nous
affirmons que si b > min{a, c}, alors il existe une matrice unimodulaire telle que pour la

nouvelle matrice o
G'=UTGU = (Z, Z) ,

on a0 <V < b Commebdb sont entiers, cette procédure se termine avec 0 < b <
min{d’, ¢}.

De plus, comme x7G'z = (2TUT)G(Ux) = 27Ga’, G’ est aussi définie positive et
/ /
a,c > 0.

Supposons b > a. En ajoutent la premiére colonne X € Z fois a la seconde colonne, et
en faisant la méme chose pour les lignes, (multiplication par une matrice unimodulaire
U), nous obtenons

G =U'GU
- a b— la
T \b—=Xa c—22b+ Na

_fa ¥
S \Y )

Si on choisit 1 < \ = LSJ, on a0 <V <b Sionab>c, nous ajoutons la seconde
colonne X' fois a la premicre colonne, respectivement ligne.

Nous obtenons une matrice G' congrue a G avec 0 < b < min{a, c}. Pour cette G',
nous avons det(G') = a'd — V2. Si b > 1, ceci est det(G') > (V' +1)> = b? > 20/ +1 > 1,
une contradiction. Donec, V' = 0, ce qui implique o’ = ¢ =1, et alors G' = I,. Comme
nous avons seulement effectué opérations élémentaires unimodulaires sur les lignes et les
colonnes simultanément, il existe une matrcie unimodulaire telle que G = U1, U = UTU.



Exercice 2. Montrer qu'un réseau entier A(A), pour une matrice A € Z™*" de rang
ligne plein est un groupe abelien.

Solution. L’ensemble Z™ est un sous-ensemble d’une espace vectoriel (qui est une groupe
abelien avec l'addition), et pour u,v € Z", le somme est définie par (u+v); = u;+v; € Z,
et o € 7. Alors, Z"™ est un (sous-)groupe. On a A(A) = {Az | z € Z"}. Ce implique
que 0 = A0 € A, car 0 € Z". Comme A(A) C R™, on doit seulement montrer que
u+v € A(A) pour u,v € A(A). Pour chaque v € A(A), on peut choisir z, € Z" tel que
v=Az,.
u+v=Az, + Az, = A(z, + 2,) € A(A).
—_——
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Exercice 3. Montrer que pour chaque n, il y a une matrice A € Z"*(™*1) avec colonnes
A= (ay,...,a,41) tel que les assertions suivantes sont vraies:

i) Pour chaque i € {1,...,n + 1}, Pensemble R; = {ay,...,a;—1,0i11,.-.,Qns1}
forme une base d’espace vectoriel R".

i1) Aucune sous-matrice A;, définie comme la matrice A sans la i-éme colonne, ne
génere le méme réseau entier que A, c.-a-d. ¥ A;: A(A) # A(4;), ou

A(A) = {Z a;z;j

J=1

n+1
A(4;) :{ >

=1, 5

zjeZ,je{l,...,n+1}}

zjeZ,je{l,...,n+1}\{i}}_

Solution. Soit

2 3 0 0
A: O 2 3 T EZnX(nJ’_l)‘
0 0o 2 3
Pour chaquei € {1,...,n}, A(A) contient un v; tel que (v;); est impaire. Le réseau entier

A(A;11) ne contient pas v;. Le réseau entier A(Ay) ne contient pas ay. La suppression
de la k-ieme colonne de la matrice A donne une matrice block-diagonale

I Ml
= (" )

ou My € ZF=Dx(k=1) est une matrice triangulaire supérieure avec entrées non-nulles, et
M, € Z=k+t)x(n=k+1) o5t yune matrice triangulaire inférieure avec entrées non-nulles.
Donc A’ est de rang plein et chaque Ay, est une base de R™.



Exercice 4. Montrer que d dans le lemme 5.6 est le gcd de la premiere ligne de A. En
d’autres mots, montrer le lemme suivant.

Lemme. Soit A € Z™*™ une matrice en nombres entiers de plein ligne rang, alors il existe
une matrice unimodulaire U € Z"*", tel que la premiere ligne de AU est de la forme
(d,0,...,0) ou d=ged(a1,a12,...,01n).

Solution. Nous allons montrer que gcd(ay 1, . .., a1,) est invariant sous opérations élémentaires
unimoduilaires. L’échange de deux colonnes ne change pas le ged. Ajouter N € Z fois une
colonne j dans une autre colonne k, j # k, change ai, en aj, = a + Aa; pour quelqu’une

A\ € Z. Par exercices 1 et 5.ii) dans fiche 11, on a

ng(al,la a2, ... 7a1,n>
= ng(ng<ak7 aj), ari1,ar2,. .- 7(11,n)
= ng(ng(CLk + )\a'ja aj)7 a1,1,01,2, - - 7a1,n)

/
= gcd(al,l, CLLQ, e ,CLk, e ,CLLn).

Donc, les opérations élémentaires unimodulaires ne changent pas le ged d’une ligne.
Comme ged(d, 0, ...,0) = d, nous avons gagné.

Exercice 5. Calculer la forme normale de Smith pour

3 12 9 0 -3 3 12 9 0 -3
4 1 0 1 1 4 1 0 1 1
A= 7T 3 21 0 8|’ B = 5 =5 15 0 10
7T 6 4 5 2 7 6 4 5 2
(Vous pouvez utiliser le fichier python sur la page web du cours.)
Solution. Le forme normale d’Hermite. On soustrait 9-fois la ligne 1 a la ligne 3.
30000 é (1) 8 8 8
o100 0 Ay =
00010 00 0 10

Echanger les lignes 3 et 4, et les colonnes 3

Echange les lignes 1 et 3, Hermite encore. 4, la forme normale de Smith est

10 0 00 100 0 0
01 0 00 010 0 0
A2_901500 A4_00100
00 0 10 000150



Et pour la matrice B: On soustrait 10-fois la ligne 1 a la ligne 3.

300 00 10 0 00
01 000 (001 0 00
Bi=1o 050 0 Bs=10 0 15 0 0
00 010 00 0 10
Ajouter la 3-i¢me ligne dans la premiére Echanger les lignes 3 et 4, et les colonnes 3
ligne, Hermite encore. et 4, la forme normale de Smith est
1 0 0 00 100 0 0
0 1 0 00 010 00
B2=110 0 15 0 0 Bi=1o 01 0 o0
0 0 0 10 00 0 15 0

Exercice 6. Soit G un groupe. Le centre de G est définie par Z(G) = {z € G | zg =
gz Vg€ G}

i) Montrer que Z(G) est un sous-groupe de G.
i1) Montrer que si G est abelien, alors Z(G) = G.
Solution.
1. Soit z1, 29 € Z(G). Donc pour tout g € G:
92z ') = 212y gzt = (123 gz = (n12)9,
alors (2125 ") € Z(@).
2. Si G est abelien, alors gz = zg pour tout z,g € G. Donc, G = Z(G).

Exercice 7. Soit H un sous-groupe de G, tel que pour chaque a € G,ilyaun b e G
avec aHH = Hb. Montrer que H est un sous-groupe normal de G, H < G.

Solution. On doit montrer que aH = Ha pour tout a € G. Pour a € G, il existe des
éléments h,h' € H, b € G tels que
ah = h'b
= b=h"lah
= aH =aHh!

= Hbh ™!
= Hh tahh™!
= Ha.

Exercice 8. Soit N <G et K <1 G. Montrer que N N K < @G.

Solution. a(NN K)a™! CaNa™' = N et a(NNK)a™' CaKa' = K. Donc a(N N
K)a ' C NN K pourtouta € G, et NN K <1 G.



