The problem can be submitted until Mai 31, 12:00 noon, into the box in front of MA C1 563 (Attention: There is no exercise session in this week).

Student(s) 1:

Question 1: The question is worth 5 points.

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4 \ \square \ 5$ Reserved for the corrector

Definition: For a directed graph G = (V, A) with weight function $\ell : A \to \mathbb{R}$, we define a potential function to be a function $d : V \to \mathbb{R}$. The reduced weight $\ell_d : A \to \mathbb{R}$ corresponding to d is given by:

$$\ell_d(u, v) = \ell(u, v) + d(u) - d(v)$$

for all $(u, v) \in A$.

Let G = (V, A) be a directed graph with weight function $\ell : A \to \mathbb{R}$ and suppose that G has no negative cycles.

- 1. Let P be a shortest path between s and t with respect to ℓ . Show that for each potential function, P is also a shortest path between s and t in respect to the reduced weights.
- 2. Show that there exists a potential function d^+ such that all reduced weights are ≥ 0 .

^{1.} You are allowed to submit your solutions in groups of at most three students.