The problem can be submitted until Mai 17, 12:00 noon, into the box in front of MA C1 563 or during the exercise session.

Student(s) 1:

Question 1: The question is worth 5 points.

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4 \ \square \ 5$ Reserved for the corrector

For a polyhedron P with vertices V and edges E, we can consider the graph G = (V, E). The combinatorial diameter of this graph, diam(P), is the minimum number of edges needed in order to reach any vertex by a path from any other vertex. Obtaining a good bound on diam(P) is a very difficult and unsolved problem, see for instance the Hirsch conjecture. But for the special case where P is bounded and the vertices of P are in $\{0,1\}^n$, Naddef has shown (and you will too...) that $diam(P) \leq n$. It might be useful to follow these steps:

- 1. Show the theorem for n = 1. (It might be useful to think about why it also works for n = 2).
- 2. Show that $P_1 := \{x \in \mathbb{R}^n \mid e_1^T x = 1\} \cap P$ corresponds to a polyhedron in dimension n-1 with vertices in $\{0,1\}^{n-1}$.
- 3. Show that set of vertices and edges of P_1 , V_1 and E_1 , is a subset of the vertices of P, i.e. $V_1 \subseteq V$ and $E_1 \subseteq E$.
- 4. If we are at vertex $v \in P$ with $v_1 = 0$ and there exists another vertex $w \in P$ with $w_1 = 1$, show that there must be a neighbour \bar{v} of v (i.e. there is an edge between v and \bar{v}) such that $\bar{v}_1 = 1$.
- 5. Conclude.

^{1.} You are allowed to submit your solutions in groups of at most three students.