Problem 1
Given \(n \) numbers \(a_1, \ldots, a_n \) find indices \(i \) and \(j \), \(1 \leq i \leq j \leq n \), such that \(\sum_{k=i}^{j} a_k \) is minimized.

We will develop two algorithms for this problem that run in linear time, \(i.e., \) the number of (arithmetic) operations is linear in \(n \).

(a) Solve the problem using Bellman-Ford as a subroutine. In particular, construct a graph such that a shortest path in this graph yields the optimal solution to the above problem. Show that the graph can be generated in linear time and that Bellman-Ford can be implemented to run in linear time on this graph.

(b) Define \(d(j) = \min_{1 \leq i \leq j} \sum_{k=i}^{j} a_k \). Conclude that the above problem is equivalent to computing \(\min_{1 \leq j \leq n} d(j) \). Show how this can be done in linear time.

Problem 2
Due to the decentralized nature of the global currency market, it might be the case that an individual or an organized group makes a large profit without risk. Arbitrage is a phenomenon that refers to cases when it is possible to convert one unit of a currency into more than one unit of the same currency by using discrepancy in exchange rates. For example, consider the case that 1 CHF buys 60 RUB, 1 RUB buys 0.019 USD and 1 USD buys 0.93 CHF. This means that a trader can transform 1 CHF into \(60 \cdot 0.019 \cdot 0.93 = 1.0602 \) CHF gaining a profit of 6.02%.

Given a list of currencies \(r_1, \ldots, r_n \) and a matrix \(E \in \mathbb{R}^{n \times n} \) where \(E_{i,j} \) specifies the exchange rate between currencies \(r_i \) and \(r_j \), design a polynomial time algorithm to test if there is a possibility of arbitrage. While modelling the problem, bear in mind that testing if a weighted directed graph has a negative cycle can be done in polynomial time.

Problem 3
Let \(D = (V, A) \) be a directed graph, \(w : A \rightarrow \mathbb{R} \) be arc weights and \(s \in V \). Suppose that there exists a path from \(s \) to each other node of \(V \).

Consider the following linear program:

\[
\begin{align*}
\max \quad & \sum_{v \in V \setminus \{s\}} x_v \\
\text{s.t.} \quad & x_v - x_u \leq w(u, v), \quad \forall (u, v) \in A \\
& x_s \leq 0.
\end{align*}
\]

(1)

Show the following:

a) This LP is feasible if and only if \(D \) has no negative cycle;

b) If \(D \) has no negative cycle, then (1) has a unique optimal solution.
Problem 4
Design an algorithm that, a directed graph \(G = (V, A) \), finds the number of shortest paths from \(s \) to \(t \) in time \(O(|V| + |A|) \).

Problem 5
A 2-matching in a graph is a collection of disjoint cycles that covers all the vertices. Show that a 2-matching can be computed in polynomial time, if such one exists. Note that it is allowed to pick an edge twice in a 2-matching, i.e., one can have a 2-cycle.

Hint: One may reduce the problem to finding a perfect matching in a bipartite graph.