Discrete Optimization (Spring 2019)

Assignment 10

Problem 1

Prove Hall's theorem: Let $G = (A \cup B, E)$ be a bipartite graph, and for each $S \subseteq A$, let

$$N(S) = \{v \in B : \exists u \in S \text{ such that } \{u, v\} \in E\}.$$

Then, G has a matching of size |A| if and only if $|N(S)| \geq |S|$ for all $S \subseteq A$.

Problem 2

Show that the node-edge incidence matrix A of some graph G is totally uninmodular, if and only if G is bipartite.

Problem 3

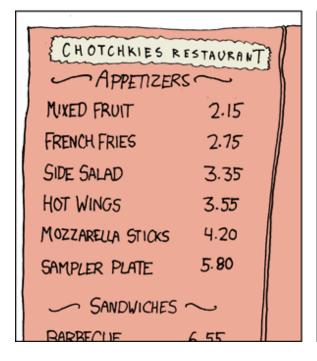
Consider a graph G = (V, E). A matching $M \subseteq E$ is said to be maximal if there is no edge $e \in E \setminus M$ such that $M \cup e$ is a matching. Denote with M^* a maximum cardinality matching in G.

- a) Show that $|M| \ge \frac{|M^*|}{2}$ for any maximal matching M in G.
- b) Provide a graph containing a maximal matching M with $|M| = \frac{|M^*|}{2}$.

Problem 4

Let $\max\{c^Tx \colon Ax \leq b, \ x \geq 0, x \in \mathbb{Z}^n\}$ be an integer program that has feasible integer solutions. Prove the following: If the LP-relaxation is unbounded, then so is the integer program. Give an example of an infeasible integer program whose LP relaxation is unbounded.

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



For more exercises or comics, please go to xkcd.com