Discrete Optimization (Spring 2019)

Assignment 9

Problem 1

Which of these matrices is totally unimodular? Justify your answer.

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Solution:

The determinant of the left matrix is 2 and thus it is not totally unimodular.

We want to show that the matrix to the right is totally unimodular. Observe:

- Since it is a $\{0,1\}$ matrix, all its submatrices of size 1 and size 2 are unimodular.
- Each submatrix containing the first and second column has two equal columns and thus determinant 0.
- The only possibility for a $\{0,1\}$ matrix of size 3×3 not to be unimodular is if it has exactly one 0 in each row and column.

The second property implies that the only submatrix of size 4 remaining to consider is:

$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

which has determinant 1.

By the first two properties above, it remains to proof that all 3×3 submatrices of M are unimodular. By the third property, we only need to exclude that there is a 3×3 submatrix of M with exactly one 0 in each row and column. This is the case because such a submatrix can not contain the first or last column, since there are not enough (respectively too many) zeros in these columns.

Problem 2

Let $M \in \mathbb{Z}^{n \times m}$ be totally unimodular. Prove that the following matrices are totally unimodular as well:

- 1. M^T
- 2. $(M I_n)$
- 3. (M M)

4. $M \cdot (I_n - 2e_j e_j^T)$ for some j.

 I_n is the $n \times n$ identity matrix and e_j is the vector having a 1 in the j-th component, and 0 in the other components.

Solution:

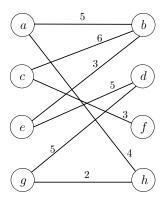
- 1. Let A be a square submatrix of M^T . Then $\det(A) = \det(A^T) \in \{-1, 0, 1\}$ as A^T is a square submatrix of M and M is totally unimodular.
- 2. Let A be a square submatrix of $(M \ I_n)$.Let a_1, \ldots, a_k be the columns of A that originate from I_n . Each of these columns has as most one 1-entry, the other entries are 0. Hence, using Laplace-expansion successively along these columns we get that $|\det(A)| = |\det(A')| \in \{-1,0,1\}$ for some square submatrix A' of M.
- 3. Let A be a square submatrix of (M M). Let a_1, \ldots, a_k be the columns of A that originate from -M. Let A' be the matrix obtained from A by multiplying a_1, \ldots, a_k by -1. Hence $|\det(A)| = |\det(A')|$. Now we have that either A' is a square submatrix of M, hence we are done, or A' has two identical columns, hence it has determinant 0.
- 4. Observe that $M \cdot (I_n 2e_j e_j^T)$ is obtained from M by multiplying one column by -1. Thus, $M \cdot (I_n 2e_j e_j^T)$ is (up to permutation of columns) a submatrix of (M M), and we are done thanks to part 3.

Problem 3

Given the weighted graph on the right, find the following:

- (a) A matching which does not cover all vertices and has weight 15.
- (b) A w-vertex cover of weight 16 where at least 7 vertices have non-zero weights.

Note: Given a weighted graph G = (V, E) with weight c. A w-vertex cover of G is a weight distribution $w : V \to \mathbb{R}$ on the vertices such that $w(u) + w(v) \ge c(uv)$ for all edges uv.



Solution:

- (a) A possible solution is $M = \{ah, cb, ed\}$.
- (b) One possibility is to start with the w-vertex cover $(2\ 3\ 3\ 5\ 0\ 0\ 0\ 2)$ for the vertices a-h respectively. Then transform it into $(3\ 2\ 4\ 4\ 1\ 0\ 1\ 1)$ by moving one weight along the cycle a,b,e,d,g,h.

Def: The node-edge incidence matrix of a graph G = (V, E) is the matrix $A \in \{0, 1\}^{|V| \times |E|}$ with

$$A(v,e) = \begin{cases} 1, & \text{if } v \in e, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 4

Let G be a cycle and let A be its node-edge incidence matrix. Give the possible values of det(A) depending if G is an odd or an even cycle.

Solution:

We show that if G is an even cycle, $\det(A) = 0$ and if G is an odd cycle, $\det(A) = \pm 2$. Note that each permutation of two rows or columns, respectively, changes the determinant by a factor of (-1). Hence, by permuting the columns and rows of A, for the sake of our claim we can assume that

$$A = \begin{bmatrix} 1 & 1 & & & & \\ & 1 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 1 & 1 \\ 1 & & & & 1 \end{bmatrix}$$

This gives

$$\det(A) = (-1)^0 \det \left(\begin{bmatrix} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & 1 & 1 \\ & & & 1 \end{bmatrix} \right) + (-1)^{|V|-1} \det \left(\begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \end{bmatrix} \right) = 1 + (-1)^{|V|-1}$$

It follows that det(A) = 0 if G is an even cycle and $det(A) = \pm 2$ if G is an odd cycle.

Problem 5

A family of sets $C \subset 2^{[n]}$ is a chain if for all $S, T \in C$ we have either $S \subseteq T$ or $T \subseteq S$. Suppose C_1 and C_2 are two chains. Let $A \in \{0,1\}^{|C_1|+|C_2|\times n}$ with $A_{S,i} = 1$ if $i \in S$ and 0 otherwise, for $i = 1, \ldots, n$ and $S \in C_1 \cup C_2$. Prove that A is totally unimodular. Hint: use induction on the size of a square submatrix of A.

Solution:

By performing elementary row operations (that do not modify the absolute value of the determinant of any square submatrix), since C_1 and C_2 are chains we can assume without loss of generality that every column of A has at most one 1 within the rows in C_1 and at most one 1 within the rows in C_2 . Let B be any square submatrix of A of size k, we perform induction on k. The result is immediate for k = 1 as A has 0/1 entries. For $k \ge 2$, there are several cases:

- There is an all zero column in B. Then det(B) = 0.
- Every column of B has two 1's, one in a row in C_1 , one in a row of C_2 . Then, summing all the rows in C_1 and subtracting all rows in C_2 , gives the 0 vector, hence $\det(B) = 0$.
- There is a column of B with exactly one 1. Then we can expand along this column to compute the determinant and the result follows by induction.