Discrete Optimization (Spring 2019)

Assignment 9

Problem 1

Which of these matrices is totally unimodular? Justify your answer.

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Problem 2

Let $M \in \mathbb{Z}^{n \times m}$ be totally unimodular. Prove that the following matrices are totally unimodular as well:

- 1. M^T
- 2. $(M I_n)$
- 3. (M M)
- 4. $M \cdot (I_n 2e_j^T e_j)$ for some j.

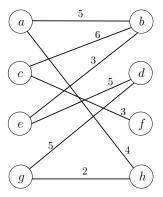
 I_n is the $n \times n$ identity matrix and e_j is the vector having a 1 in the j-th component, and 0 in the other components.

Problem 3

Given the weighted graph on the right, find the following:

- (a) A matching which does not cover all vertices and has weight 15.
- (b) A w-vertex cover of weight 16 where at least 7 vertices have non-zero weights.

Note: Given a weighted graph G = (V, E) with weight c. A w-vertex cover of G is a weight distribution $w : V \to \mathbb{R}$ on the vertices such that $w(u) + w(v) \ge c(uv)$ for all edges uv.



Def: The node-edge incidence matrix of a graph G = (V, E) is the matrix $A \in \{0, 1\}^{|V| \times |E|}$ with

$$A(v, e) = \begin{cases} 1, & \text{if } v \in e, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 4

Let G be a cycle and let A be its node-edge incidence matrix. Give the possible values of det(A) depending if G is an odd or an even cycle.

Problem 5

A family of sets $C \subset 2^{[n]}$ is a chain if for all $S, T \in C$ we have either $S \subseteq T$ or $T \subseteq S$. Suppose C_1 and C_2 are two chains. Let $A \in \{0,1\}^{|C_1|+|C_2|\times n}$ with $A_{S,i} = 1$ if $i \in S$ and 0 otherwise, for $i = 1, \ldots, n$ and $S \in C_1 \cup C_2$. Prove that A is totally unimodular. Hint: use induction on the size of a square submatrix of A.