Discrete Optimization (Spring 2019)

Assignment 7

Problem 1

Consider the two player matrix game defined by

$$\begin{pmatrix} 3 & 3 & -8 \\ -1 & 2 & -1 \end{pmatrix}$$

Write down a linear program that computes the value of the game

$$\max_{x \in X} \min_{y \in Y} x^T A y$$

and find a strategy $x^* \in X$ that guarantees this value as an expected payoff for the row-player.

Hint: Use our own python implementation of the simplex algorithm if you do not want to compute the strategy by hand.

Solution:

Observe that the column player is always going to prefer the first column to the second one since her incentive is to minimize the "loss". Thus, the optimal row strategy x^* can be equivalently found by solving the LP (5.9) in the lecture notes, with A being the reduced matrix

$$\left(\begin{array}{cc} 3 & -8 \\ -1 & -1 \end{array}\right).$$

When rewriting this LP in the standard form we obtain:

where a feasible basis $\{1,3,5\}$ corresponds to the solution $(x_0, x_1, x_2) = (-1,0,1)$. By running the simplex algorithm we obtain that this is an optimal primal solution to the above LP, with the corresponding dual optimum $\lambda = (7/11, 4/11, 0, 1, 0, 0)$. Thus, an optimal row strategy is $x^* = (0,1)^T$, an optimal column strategy is $y^* = (7/11, 0, 4/11)^T$ and the value of the game is $(x^*)^T A y^* = -1$.

Problem 2

Given a mixed row strategy \hat{x} and the following LP

$$\min\{(\hat{x}^T A)y: \sum_{j} y_j = 1, \ y \ge 0\},\$$

argue the following: solving this LP with the Simplex method produces a pure strategy.

Solution:

Observe that the constraint matrix of the above LP has the full column rank, denote it with m, and the problem is clearly feasible. This gives that the polyhedron P corresponding to the feasible region has vertices. Furthermore, observe $P \subseteq [0,1]^m$ which implies that the LP is bounded and the Simplex terminates at a vertex.

Finally, no vertex/feasible basis can be defined by all the constraints $y_j \ge 0$, $j \in [m]$ being active. Otherwise, one has $\sum_j y_j = 0$. By using the above observations we obtain that each vertex v of P is induced by an index $k \in [m]$, i.e., v is the unique solution to the system:

$$\sum_{j} y_{j} = 1,$$

$$y_{j} = 0, \quad \forall j \in [m], \ j \neq k,$$

so each vertex of P is a pure strategy.

Problem 3

Prove Loomis' Theorem, i.e., for any two-person zero-sum game specified by a matrix $A \in \mathbb{R}^{m \times n}$ show the following:

$$\max_{x} \min_{j} x^{T} A e_{j} = \min_{y} \max_{i} e_{i}^{T} A y, \tag{1}$$

where x ranges over all vectors in \mathbb{R}^m_+ with $1^T x = 1$, and an analogous statement holds for y. This theorem states that there is a pure best response.

Solution:

By using Problem 2 we have that for any fixed $\hat{x} \in \mathbb{R}^n$ one has

$$\min_{j} \hat{x}^{T} A e_{j} = \min\{(\hat{x}^{T} A) y : \sum_{j} y_{j} = 1, \ y \ge 0\},\$$

and an analogous statement holds for $\max_i e_i^T A \hat{y}$ with $\hat{y} \in \mathbb{R}^n$. The minimax theorem gives the desired result:

$$\max_{x} \min_{j} x^{T} A e_{j} = \max_{x} \min_{y} x^{T} A y = \min_{y} \max_{x} x^{T} A y = \min_{y} \max_{i} e_{i}^{T} A y.$$
 (2)

Problem 4

A matrix $P \in \mathbb{R}^{n \times n}$ is *stochastic*, if $p_{ij} \geq 0$ for all $i, j \in \{1, \dots, n\}$ and

$$\sum_{j=1}^{n} p_{ij} = 1 \text{ for all } i.$$

Use duality to show that a stochastic matrix has a non-negative left eigenvector $p \in \mathbb{R}^m_{\geq 0}$ associated to the eigenvalue 1, i.e. that the following system has a non-zero solution

$$p^T P = p^T, \, p \ge 0.$$

Solution:

Consider the LP:

$$\begin{aligned} & \text{min} & -1^T y \\ & \text{s.t.} & y^T (P-I) = 0^T, \\ & y \geq 0, \end{aligned}$$

and its dual:

$$\max \quad 0^T x$$

s.t. $(P - I)x \le -1$.

We first show that the dual is infeasible. Assume the contrary, let \bar{x} be a feasible solution to the dual and $j = \arg\min_{i \in [n]} \bar{x}_i$. Denote with P_j the j-th column of P, from the definition of stochastic matrices we have that $P_j\bar{x}$ is a convex combination of components of \bar{x} . This means that $P_j\bar{x} \geq \min_{i \in [n]} \bar{x}_i = \bar{x}_j$ and equivalently $P_j\bar{x} - \bar{x}_j > -1$. A contradiction to feasibility of \bar{x} .

Given that the dual is infeasible, by duality the primal has to be either infeasible or unbounded. It is unbounded since 0 is a feasible solution. Thus, there exists \bar{y} such that $\bar{y}^T(P-I) = 0^T, \bar{y} \ge 0$ and $\bar{y} \ne 0$.

Problem 5

Give an example of a pair of (primal and dual) linear programs, both of which have infinite sets of optimal solutions.

Solution:

One can take the primal

$$\max\{0^T x: x_1 + 2x_2 \le 0, -x_1 - 2x_2 \le 0\}$$

and its dual

$$\min\{0^T y: \ y_1 - y_2 = 0, \ 2y_1 - 2y_2 = 0, \ y \ge 0\}.$$