The problem can be submitted until March 15, 12:00 noon, either at the exercise session or into the box in front of MA C1 563.

Student(s) 1 :

Question 1: The question is worth 5 points.

$$\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4 \ \square \ 5$$
 Reserved for the corrector

Consider a linear program $\max\{c^Tx\colon x\in\mathbb{R}^n, Ax\leq b\}$ with $A\in\mathbb{R}^{m\times n}$ full column rank and a feasible basis $B\subseteq\{1,\ldots,m\}$. (Recall that a basis is feasible if $x_B^*=A_B^{-1}b_B$ is a feasible solution, in fact a vertex.) The aim is to show that, if B is not an optimal basis, x_B^* is not an optimal solution under a certain condition.

(i) Show that there exists a unique $\lambda \in \mathbb{R}^m$ such that

$$\lambda^T A = c^T$$
 and $\lambda_j = 0$ for each $j \notin B$.

(ii) Let $i \in B$. Show that there exists a unique $d_i \in \mathbb{R}^n$, $d_i \neq 0$ such that

$$a_j^T d_i \begin{cases} 0 & \text{for } j \in B \setminus \{i\} \\ -1 & \text{if } j = i. \end{cases}$$

Show that $\lambda_i < 0$ implies $c^T d_i > 0$.

(iii) Conclude that, if the inequalities that are tight at x_B^* are those indexed by B only, then x_B^* is not optimal.

^{1.} You are allowed to submit your solutions in groups of at most three students.