The problem can be submitted until March 8, 12:00 noon, either at the exercise session or into the box in front of MA C1 563.

Student(s) 1:

Question 1: The question is worth 5 points.

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4 \ \square \ 5$ Reserved for the corrector

Assume validity of the following form of the Farkas' lemma

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax = b, x \geq 0$, $x \in \mathbb{R}^n$ has a solution if and only if for all $\lambda \in \mathbb{R}^m$ with $\lambda^T A \geq 0$, one has $\lambda^T b > 0$.

Prove the following variant of Farkas' lemma (Theorem 3.11):

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax \leq b, x \in \mathbb{R}^n$ has a solution if and only if for all $\lambda \in \mathbb{R}^m_{\geq 0}$ with $\lambda^T A = 0$ one has $\lambda^T b \geq 0$.

Sol.: The system $Ax \leq b$ has a solution if and only if the system $\hat{A}\hat{x} = b$ has a positive solution $\hat{x} \geq 0$ where $\hat{A} = [A - A I_m]$ and $\hat{x} \in \mathbb{R}^{(2n+m)\times 1}$. Thus, by the Farkas lemma, this happens if and only if for all $\lambda \in \mathbb{R}^m$ such that $\lambda^T A \geq 0$, one has $\lambda^T b \geq 0$. Since $\lambda^T [A - A I_m] \geq 0$ is equivalent to $\lambda \geq 0$ and $\lambda^T A = 0$ (since $\lambda^T A, -\lambda^T A \geq 0$), the variant of Farkas' lemma is proven.

^{1.} You are allowed to submit your solutions in groups of at most three students.