The problem can be submitted until March 1, 12:00 noon, either at the exercise session or into the box in front of MA C1 563.

 $Student(s)^1:$

Question 1: The question is worth 5 points.

$$\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4 \ \square \ 5$$
 Reserved for the corrector

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a bounded, non-empty set. Formulate a linear program that computes the radius of the largest ball that can be inscribed into P.

Sol.: A ball of radius r and center x is contained in P if and only if $x \in P$ and x has distance at least r from any hyperplane defining P. Hence we obtain the following linear program:

$$\max r$$

$$s.t. \quad \frac{b_i - a_i x}{||a_i||} \ge r \quad \forall i = 1, \dots, m$$

$$Ax \le b$$

where a_1, \ldots, a_m are the rows of A and $b = (b_1 \ldots b_m)^{\top}$.

^{1.} You are allowed to submit your solutions in groups of at most three students.