Discrete Optimization (Spring 2019)

Assignment 6

Problem 1

Determine the dual program for the following linear programs:

1.

$$\max 2x_1 + 3x_2 - 7x_3$$

$$x_1 + 3x_2 + 2x_3 = 4$$

$$x_1 + x_2 \le 8$$

$$x_1 - x_3 \ge -15$$

$$x_1, x_2 \ge 0$$

2.

Problem 2

In the setting of the matrix-game described in Section 5.1 of the lecture notes, show that for $A \in \mathbb{R}^{m \times n}$, one has

$$\max_{i} \min_{j} A(i, j) \le \min_{j} \max_{i} A(i, j).$$

Problem 3

Consider the following linear program $\max\{c^Tx: Ax \leq b\}$ and its dual $\min\{b^Ty: A^Ty = c, y \geq 0\}$. Suppose that both programs are bounded and feasible. Let x_0 and y_0 be feasible solutions of the primal, respectively the dual linear program. Show that the following are equivalent:

- (i) x_0 and y_0 are optimal solutions of the primal, respectively the dual.
- (ii) $c^T x_0 = b^T y_0$.
- (iii) If a component of y_0 is positive, the corresponding inequality in $Ax \leq b$ is satisfied by x_0 with equality.

Problem 4

For each of the following assertions, provide a proof or a counterexample.

- (i) An index that has just left the basis B in the simplex algorithm cannot enter in the very next iteration.
- (ii) An index that has just entered the basis B in the simplex algorithm cannot leave again in the very next iteration.

Problem 5

We define two different norms on vectors. The infinity-norm is defined by $||y||_{\infty} = \max_{i} |y_{i}|$ and the 1-norm is defined by $||y||_{1} = \sum_{i} |y_{i}|$.

Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^m$ be a vector. Consider the problem of minimizing $||Ax - b||_{\infty}$ over all $x \in \mathbb{R}^n$.

Suppose that v is the optimal value of the problem.

- (a) Let $p \in \mathbb{R}^m$ be a vector satisfying $||p_i||_1 \leq 1$ and $p^T A = 0$. Show that $p^T b \leq v$.
- (b) To obtain the best possible lower bound of the form considered in (a), we construct the following linear program

$$\begin{array}{lll} \max & p^T b \\ & p^T A & = & 0 \\ & \sum_{i=1}^m |p_i| & \leq & 1. \end{array}$$

Using strong duality, show that the optimal solution of this problem is equal to v.

Problem 6

Consider the following problem. We are given $B \in \mathbb{N}$, and a set of integer points

$$S = \{ p \in \mathbb{Z}^n : 0 \le p_i \le B, \ \forall i = 1, \dots, n \},\$$

whose points are all colored blue but one, which is red. We have an oracle that, given $i \in \{1, ..., n\}$ and $\alpha \in \{0, ..., B\}$, tells us whether there exists a red point $x^* \in S$ with $x_i^* \leq \alpha$. Give an algorithm to find the red point using $O(n \log(B))$ many oracle calls.