Discrete Optimization (Spring 2019)

Assignment 3

Problem 1

Show the "if" direction of the Farkas' lemma: given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, if there exists a $\lambda \in \mathbb{R}^m_{\geq 0}$ such that $\lambda^\top A = 0$ and $\lambda^\top b = -1$, then the system $Ax \leq b$ is unfeasible.

Solution:

Suppose that there exists $x^* \in \mathbb{R}^n$ such that $Ax^* \leq b$. Then, since $\lambda \geq 0$, we have:

$$\lambda^{\top} A x^* \leq \lambda^{\top} b \implies 0 \leq -1,$$

a contradiction.

Problem 2

A polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ contains a line, if there exists a nonzero $v \in \mathbb{R}^n$ and an $x^* \in \mathbb{R}^n$ such that for all $\lambda \in \mathbb{R}$, the point $x^* + \lambda \cdot v \in P$. Show that a nonempty polyhedron P contains a line if and only if A does not have full column-rank.

Solution:

Assume that P contains a line $\{x \in \mathbb{R}^n : x = x^* + \lambda \cdot v, \ \lambda \in \mathbb{R}\}$. We claim that $v \in ker(A)$, i.e. for all rows a_i of A we have $a_i^T v = 0$. Assume for contradiction that there is a row a_i with $a_i^T v \neq 0$. Then we can choose $\lambda \in \mathbb{R}$ such that $a_i^T x^* + \lambda a_i^T v > b_i$ (namely such that $|\lambda| > |\frac{b_i - a_i^T x^*}{a_i^T v}|$). Thus for $x := x^* + \lambda v$ we have $x \notin P$ because $a_i^T x > b_i$. This is a contradiction to the fact that P contains the line $\{x \in \mathbb{R}^n : x = x^* + \lambda \cdot v, \ \lambda \in \mathbb{R}\}$.

Thus the kernel of A is not empty, and A does not have full column rank.

Conversely, if A does not have full column rank, let x^* be some feasible point of the polyhedron, and let v be a nonzero vector from the kernel of A. Then $x^* + \lambda \cdot v \in P$ for all $\lambda \in \mathbb{R}$. Hence P contains a line.

Problem 3

Given $x^* = (0\ 1\ 1)^T \in \mathbb{R}^3$ and the vector $d = (1\ 1\ -1)^T \in \mathbb{R}^3$ decide if the ray $\{x^* + \lambda d : \lambda \in \mathbb{R}_{\geq 0}\}$ intersects the following hyperplanes while moving in the direction of d. Give the order in which the trajectory passes the planes.

$$P_1 = \{x \in \mathbb{R}^3 : (1 \ 2 \ 3)x = 0\}$$

$$P_2 = \{x \in \mathbb{R}^3 : (3 \ 2 \ 1)x = 4\}$$

$$P_3 = \{x \in \mathbb{R}^3 : (1 \ 1 \ 1)x = 2\}$$

$$P_4 = \{x \in \mathbb{R}^3 : (0 \ 1 \ 3)x = -1\}$$

Solution:

The trajectory of x^* is given by the line $\{x^* + \delta d : \delta \geq 0\}$ where a point in the trajectory moves further away from x^* if δ becomes larger. To find the order in which x^* passes the planes we search the corresponding δ_i for which $x^* + \delta_i d$ is in the plane P_i or decide that such a δ does not exist.

 P_1 : $(1\ 2\ 3)((0\ 1\ 1)^T + \delta(1\ 1\ -1)^T) = 5 + 0 \cdot \delta = 5 \neq 0$ for all δ , so x^* does not pass P_1 since it moves parallel to it.

P₂:
$$(3\ 2\ 1)((0\ 1\ 1)^T + \delta(1\ 1\ -1)^T) = 3 + 4\delta = 4$$
 for $\delta = \frac{1}{4}$.
P₃: $(1\ 1\ 1)((0\ 1\ 1)^T + \delta \cdot (1\ 1\ -1)^T) = 2 + \delta = 2$ for $\delta = 0$, so x^* is already on P₃.
P₄: $(0\ 1\ 3)((0\ 1\ 1)^T + \delta \cdot (1\ 1\ -1)^T) = 4 - 2\delta = -1$ for $\delta = \frac{5}{2}$.

The order in which x^* passes the planes is P_3 , P_2 , P_4 . The plane P_1 will never be passed.

Problem 4

Provide a proof or counterexample to the following statement:

Let $\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\}$ be a linear program with $A \in \mathbb{R}^{m \times n}$ of full column rank. If B is an optimal basis, then all the components of λ_B are strictly positive.

Solution:

False. Consider the linear program

$$\max \quad x_1 + x_2$$
 subject to
$$x_1 + x_2 \le 1$$

$$-x_1 \le 0$$

$$-x_2 \le 0$$

The feasible region of this LP is the triangle in \mathbb{R}^2 with vertices (0,0), (1,0), and (0,1). An optimal basis is $\{1,2\}$ with corresponding feasible basic solution (0,1). Here,

$$\lambda^{\mathrm{T}} \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

which implies $\lambda^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Problem 5

Consider the following LP:

- a) Given the basis $B = \{1, 2, 6\}$, compute x^* with $A_B x^* = b_B$.
- b) Decide whether x^* is feasible.
- c) Compute $\lambda \in \mathbb{R}^3$ with $\lambda^T A_B = c^T$.
- d) Decide whether B is an optimal basis.

Solution:

a) Calculate A_B^{-1} and write $x^* = A_B^{-1} b_B$

$$x^* = \frac{1}{9} \begin{bmatrix} 6 & 3 & 6 \\ 1 & 2 & 7 \\ 0 & 0 & -9 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 33 \\ 13 \\ 0 \end{bmatrix}$$

b) For the feasibility of x^* it is sufficient to see if it fulfills all inequalities not in the basis, i.e. in the set $\{3,4,5\}$.

$$\frac{1}{9}(-33+3\cdot 13+2\cdot 0) = \frac{6}{9} \le 2 \tag{3}$$

$$\frac{1}{9}(-33+0+0) \le 0 \tag{4}$$

$$\frac{1}{9}(0 - 13 + 0) \le 0 \tag{5}$$

c) We reuse A_B^{-1} as calculated in a) to get the equation $\lambda^T = c^T A_B^{-1}$

$$\lambda^{T} = \begin{bmatrix} 2 & 4 & 3 \end{bmatrix} \frac{1}{9} \begin{bmatrix} 6 & 3 & 6 \\ 1 & 2 & 7 \\ 0 & 0 & -9 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 16 & 14 & 13 \end{bmatrix}$$

d) B is optimal. To see this, extend the λ found in c) to a $\lambda' \in \mathbb{R}^6$ by adding zeros to at the lines not in B. Now $\lambda' \geq 0$ and it fulfills the equation $\lambda' A = c^T$. By Definition 4.3 of the lecture notes, B is an optimal basis.