Discrete Optimization (Spring 2019)

Assignment 3

Problem 1

Show the "if" direction of the Farkas' lemma: given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, if there exists a $\lambda \in \mathbb{R}^m_{\geq 0}$ such that $\lambda^\top A = 0$ and $\lambda^\top b = -1$, then the system $Ax \leq b$ is unfeasible.

Problem 2

A polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ contains a line, if there exists a nonzero $v \in \mathbb{R}^n$ and an $x^* \in \mathbb{R}^n$ such that for all $\lambda \in \mathbb{R}$, the point $x^* + \lambda \cdot v \in P$. Show that a nonempty polyhedron P contains a line if and only if A does not have full column-rank.

Problem 3

Given $x^* = (0\ 1\ 1)^T \in \mathbb{R}^3$ and the vector $d = (1\ 1\ -1)^T \in \mathbb{R}^3$ decide if the ray $\{x^* + \lambda d : \lambda \in \mathbb{R}_{\geq 0}\}$ intersects the following hyperplanes while moving in the direction of d. Give the order in which the trajectory passes the planes.

$$P_1 = \{x \in \mathbb{R}^3 : (1 \ 2 \ 3)x = 0\}$$

$$P_2 = \{x \in \mathbb{R}^3 : (3 \ 2 \ 1)x = 4\}$$

$$P_3 = \{x \in \mathbb{R}^3 : (1 \ 1 \ 1)x = 2\}$$

$$P_4 = \{x \in \mathbb{R}^3 : (0 \ 1 \ 3)x = -1\}$$

Problem 4

Provide a proof or counterexample to the following statement:

Let $\max\{c^Tx:x\in\mathbb{R}^n,Ax\leq b\}$ be a linear program with $A\in\mathbb{R}^{m\times n}$ of full column rank. If B is an optimal basis, then all the components of λ_B are strictly positive.

Problem 5

Consider the following LP:

- a) Given the basis $B = \{1, 2, 6\}$, compute x^* with $A_B x^* = b_B$.
- b) Decide whether x^* is feasible.
- c) Compute $\lambda \in \mathbb{R}^3$ with $\lambda^T A_B = c^T$.
- d) Decide whether B is an optimal basis.