Discrete Optimization (Spring 2019)

Assignment 2

Problem 1

A convex combination of the points $v_1, \ldots, v_k \in \mathbb{R}^n$ is a point of the form $\lambda_1 v_1 + \cdots + \lambda_n v_n$ where $\lambda_i \geq 0$ for each i and $\lambda_1 + \cdots + \lambda_n = 1$.

Let $K \subseteq \mathbb{R}^n$ and $v \in K$ an extreme point of K. Show that v cannot be written as a convex combination of other points in K.

Problem 2

Find a counterexample (and argue why it is one) for Theorem 3.10 when (1) K is convex but not closed, (2) K is not convex but closed.

Problem 3

Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ with $A \in \mathbb{R}^{m \times n}$, rank(A) = n and $b \in \mathbb{R}^m$. Let $x^* \in P$ and $A'x \leq b'$ be given as in the lecture, i.e., the sub-system of $Ax \leq b$ consisting of inequalities that are satisfied by x^* with equality. Suppose that x^* is not a vertex. We know already that this is equivalent to rank(A') < n. In this exercise, you will show that P contains at least one vertex.

- i) Show that there exists a $d \in \mathbb{R}^n$ with $d \neq 0$ and A'd = 0.
- ii) With this d, show that the line $\{x^* + \lambda d : \lambda \in \mathbb{R}\}$ is not contained in P.
- iii) Deduce that there exists a feasible point y^* of P whose sub-system $A''x \leq b''$ of inequalities that are satisfied by y^* with equality, satisfies $\operatorname{rank}(A'') > \operatorname{rank}(A')$.
- iv) Conclude that P has a vertex.

Problem 4

Show the following: If $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and the system

$$Ax = b, x \ge 0$$

admits a solution, then there exists a solution \hat{x} that has only m non-zero entries. Hint: Use the previous exercise.

Problem 5

A conic combination of vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ is a vector of the form $\lambda_1 v_1 + \cdots + \lambda_n v_n$ with $\lambda_i \in \mathbb{R}_{\geq 0}$ for each i. The set of all conic combinations of the v_1, \ldots, v_k is denoted by cone($\{a_1, \ldots, a_n\}$).

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_1, \ldots, a_n \in \mathbb{R}^n$ be the columns of A.

- i) Show that cone($\{a_1, \ldots, a_n\}$) is the polyhedron $P = \{y \in \mathbb{R}^n : A^{-1}y \ge 0\}$.
- ii) Show that cone($\{a_1, \ldots, a_k\}$) for $k \leq n$ is the set

$$P_k = \{ y \in \mathbb{R}^n : a_i^{-1} x \ge 0, i = 1, \dots, k, a_i^{-1} x = 0, i = k + 1, \dots, n \},$$

where a_i^{-1} denotes the *i*-th row of A^{-1} .