Goals

Goals

- **Recap:** s t-flows, s t-cuts, weak duality
- Ford-Fulkerson algorithm
- Strong duality: Max-Flow-Min-Cut-Theorem
- Edmonds-Karp algorithm
- Application: Scheduling on Uniform Parallel Machines

Recap: s - t-flows

- Network: Digraph D = (V, A) with capacity function $u: A \to \mathbb{R}_{\geq 0}$.
- ullet For $s,t\in V$, an s-t-flow in D is a function $f:A\to\mathbb{R}_{\geq 0}$ such that

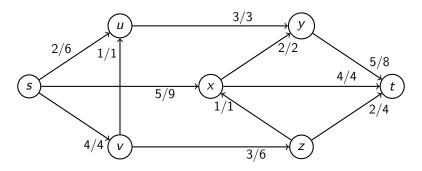
$$\sum_{\mathsf{a} \in \delta^{out}(v)} f(\mathsf{a}) = \sum_{\mathsf{a} \in \delta^{in}(v)} f(\mathsf{a})$$
, for all $v \in V - \{s,t\}$.

- f is feasible, if $f(a) \le u(e)$ for all $a \in A$.
- The value of f is

$$value(f) := \sum_{a \in \delta^{out}(s)} f(a) - \sum_{a \in \delta^{in}(s)} f(a).$$

Recap: s - t-flows

Example:



Maximum s - t-flow problem

Find a feasible s - t-flow of maximum value.

Recap: s - t-cuts

$$D=(V,A), u: A \to \mathbb{R}_{\geq 0}$$

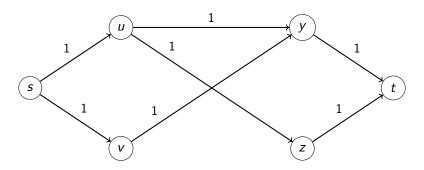
- $U \subseteq V$: $\delta^{out}(U) := \{(u, v) \in A : u \in U, v \notin U\}$ is a cut.
- If $s \in U$, $t \notin U$: $\delta^{out}(U)$ is an s t-cut.
- Capacity : $u(\delta^{out}(U)) := \sum_{a \in \delta^{out}(U)} u(a)$.

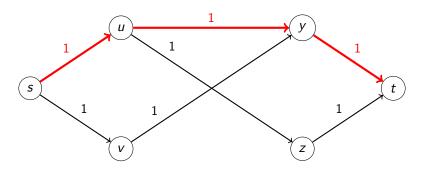
Minimum s - t-cut problem

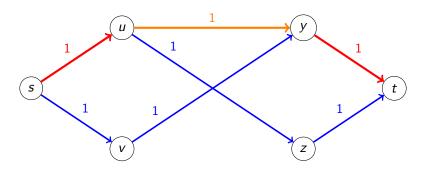
Find an s-t cut $\delta^{out}(U)$ such that $u(\delta^{out}(U))$ is minimal.

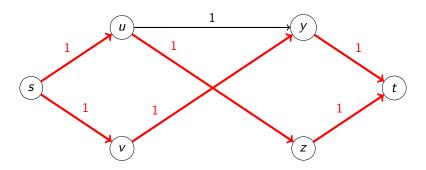
Theorem (Weak duality)

Let f be a feasible s-t-flow and let $\delta^{out}(U)$ be an s-t-cut, then $\mathsf{value}(f) \leq u(\delta^{out}(U)).$









Residual graphs

- For an arc $a = (u, v) \in A$, let a^{-1} denote the arc (v, u).
- Wlog.: $a^{-1} \notin A$.
- Let $f:A \to \mathbb{R}$ and $u:A \to \mathbb{R}_{\geq 0}$ with $0 \leq f \leq u$.
- Define

$$A_f := \{a : a \in A, f(a) < u(a)\} \cup \{a^{-1} : a \in A, f(a) > 0\}.$$

- $D_f = (V, A_f)$ is the **residual graph** of f.
- Define residual capacities

$$u_f: A_f \to \mathbb{R}_{\geq 0}, \ u_f(a) = \begin{cases} u(a) - f(a), & \text{if } a \in A \\ f(a), & \text{if } a^{-1} \in A. \end{cases}$$

Ford-Fulkerson algorithm

- An **undirected path** is a sequence $P = (v_0, a_1, v_1, \dots, v_{m-1}, a_m, v_m)$ such that $a_i \in A$ and $a_i = (v_{i-1}, v_i)$ or $a_i = (v_i, v_{i-1})$ for each $i = 1, \dots, m$.
- Every directed path P in D_f yields an undirected path in D.
- Define $\chi^P \in \{0, \pm 1\}^A$ as

$$\chi^P(a) = \begin{cases} 1, & \text{if } P \text{ traverses } a, \\ -1, & \text{if } P \text{ traverses } a^{-1}, \\ 0, & \text{if } P \text{ traverses neither } a \text{ nor } a^{-1}. \end{cases}$$

1: **function** FORD-FULKERSON(D = (V, A), u) 2: $f \leftarrow 0$. 3: **while** $\exists s - t$ -path P in D_f **do** 4: $\varepsilon \leftarrow \min\{u_f(a) : a \in P\}$. 5: $f \leftarrow f + \varepsilon \cdot \chi^P$. 6: **end while** 7: **return** f. 8: **end function**

Ford-Fulkerson: Correctness

```
1: function FORD-FULKERSON(D = (V, A), u)
2: f \leftarrow 0.
3: while \exists s - t-path P in D_f do
4: \varepsilon \leftarrow \min\{u_f(a) : a \in P\}.
5: f \leftarrow f + \varepsilon \cdot \chi^P.
6: end while
7: return f.
8: end function
```

Theorem

The output f of FF is a flow.

Theorem

If u is integer, then the output f of FF is integer.

Strong duality

Recall:
$$D = (V, A)$$
, $u : A \to \mathbb{R}_{\geq 0}$, f flow, $U \subseteq V$

- $\operatorname{excess}_{f}(U) := \sum_{a \in \delta^{in}(U)} f(a) \sum_{a \in \delta^{out}(U)} f(a)$.
- $\operatorname{excess}_f(U) = \sum_{v \in U} \operatorname{excess}_f(v)$.
- $A_f := \{a : a \in A, f(a) < u(a)\} \cup \{a^{-1} : a \in A, f(a) > 0\}.$

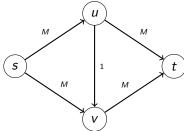
Theorem (Max-Flow-Min-Cut-Theorem)

The maximum value of a feasible s-t-flow is equal to the minimum capacity of an s-t-cut.

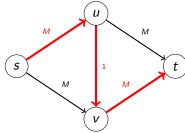
Corollary

FF computes a maximum s-t-flow. If u is integer, there is an integer max flow.

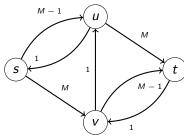
- 1: **function** FORD-FULKERSON(D = (V, A), u) 2: $f \leftarrow 0$. 3: **while** $\exists s - t$ -path P in D_f **do** 4: $\varepsilon \leftarrow \min\{u_f(a) : a \in P\}$. 5: $f \leftarrow f + \varepsilon \cdot \chi^P$. 6: **end while**
- 7: return f.
- 8: end function
 - Each iteration takes time O(|A|) (using e.g. Breadth-First search).
 - How many iterations?



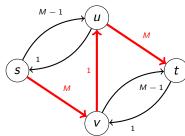
- 1: **function** FORD-FULKERSON(D = (V, A), u) 2: $f \leftarrow 0$. 3: **while** $\exists s - t$ -path P in D_f **do** 4: $\varepsilon \leftarrow \min\{u_f(a) : a \in P\}$. 5: $f \leftarrow f + \varepsilon \cdot \chi^P$. 6: **end while**
- 7: return f.
- 8: end function
 - Each iteration takes time O(|A|) (using e.g. Breadth-First search).
 - How many iterations?



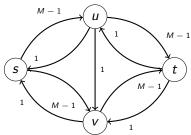
- 1: **function** FORD-FULKERSON(D = (V, A), u) 2: $f \leftarrow 0$. 3: **while** $\exists s - t$ -path P in D_f **do** 4: $\varepsilon \leftarrow \min\{u_f(a) : a \in P\}$. 5: $f \leftarrow f + \varepsilon \cdot \chi^P$. 6: **end while**
- 7: return f.
- 8: end function
 - Each iteration takes time O(|A|) (using e.g. Breadth-First search).
 - How many iterations?



- 1: **function** FORD-FULKERSON(D = (V, A), u) 2: $f \leftarrow 0$. 3: **while** $\exists s - t$ -path P in D_f **do** 4: $\varepsilon \leftarrow \min\{u_f(a) : a \in P\}$. 5: $f \leftarrow f + \varepsilon \cdot \chi^P$. 6: **end while**
- 7: **return** f.
- 8: end function
 - Each iteration takes time O(|A|) (using e.g. Breadth-First search).
 - How many iterations?



- 1: **function** Ford-Fulkerson(D = (V, A), u) $f \leftarrow 0$. 2: while $\exists s - t$ -path P in D_f do 3: $\varepsilon \leftarrow \min\{u_f(a) : a \in P\}.$ 4: $f \leftarrow f + \varepsilon \cdot \chi^{P}$. 5: end while 6:
- return f. 7:
- 8: end function
 - Each iteration takes time O(|A|) (using e.g. Breadth-First search).
 - How many iterations?



Emonds-Karp: Max-Flow in polynomial time

Theorem

If we choose in each iteration a shortest s-t-path in D_f as a flow augmenting path, the number of iterations is at most $|V| \cdot |A|$.

- Digraph $D = (V, A), s, t \in V$
- $\mu(D)$ is length of a shortest path from s to t.
- $\alpha(D)$ is the set of arcs contained in at least one shortest s-t-path.

Lemma

Let D=(V,A) be a digraph and $s,t\in V$. Define $D':=(V,A\cup\alpha(D)^{-1})$. Then $\mu(D)=\mu(D')$ and $\alpha(D)=\alpha(D')$.

Corollary

A maximum s - t-flow an be found in time $O(|V| \cdot |A|^2)$.

Scheduling on Uniform Parallel Machines

The setting

- *n* jobs, job *j* characterized by
 - \triangleright processing time p_i ,
 - release time r_i ,
 - ▶ deadline d_j .
- M identical machines.
- Each machine can process only one job at a time.
- Each job requires a total processing time p_j between release time r_j and deadline d_j .
- Preemption allowed, i.e. processing of a job can be interrupted and continued later.

Scheduling problem

Find a feasible schedule that meets all constraints or assert that no such schedule exists.

Scheduling on Uniform Parallel Machines

Example:

Job (<i>j</i>)	1	2	3	4
p_j	1.5	1.25	2.1	3.6
rj	3	1	3	5
d_j	5	4	7	9

Feasible schedule on 2 processors:



What does this have to do with Max-Flows?

Scheduling on Uniform Parallel Machines

- Sort the release times and deadlines ascending. Let t_1, \ldots, t_k be the sorted sequence. (In our example: 1 3 4 5 7 9)
- Split the time horizon into disjoint intervals, i.e. define intervals $T_i := [t_i, t_{i+1})$ for $i = 1, \ldots, k$. (In our example we have $T_1 = [1, 3)$, $T_2 = [3, 4)$, $T_3 = [4, 5)$, $T_4 = [5, 7)$, $T_6 = [7, 9)$).
- Construct a network as follows:
 - ▶ Insert a node j for each job j = 1, ..., n.
 - ▶ Insert a node T_i for each interval T_i , i = 1, ..., k 1.
 - ▶ Add an arc (j, T_i) for each job j such that $T_i \subseteq [r_i, d_i]$ of capacity $|T_i|$.
 - Add a node s and arcs (s,j) for each job j, of capacity p_i .
 - Add a node t and arcs (T_i, t) for each interval i, of capacity $M \cdot |T_i|$.

Theorem

There is a feasible schedule for the scheduling problem if and only if there is a flow of value $\sum_{j=1}^{n} p_j$.

Goals

Goals

- **Recap:** s t-flows, s t-cuts, weak duality \checkmark
- Ford-Fulkerson algorithm √
- Strong duality: Max-Flow-Min-Cut-Theorem ✓
- Edmonds-Karp algorithm √
- Application: Scheduling on Uniform Parallel Machines √