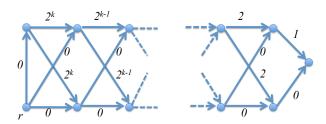
PhD Doctoral Course - Network Design - 22th September 2009

2nd Assignment

1. Consider the graph G_k reported in the following figure. Show that Ford's algorithm can take more than 2^k steps to solve the shortest path problem on G_k .



- **2.** We are given numbers a_1, \ldots, a_n . We want to find i and j, with $1 \le i \le j \le n+1$ so that $\sum_{k=i}^{j-1} a_k$ is minimized. Reduce the problem to a shortest path problem.
- **3.** Give an example to show that Dijkstra's algorithm can give an incorrect result if negative costs are allowed.
- **4.** Let G(V,E) be a directed connected graph with cost vector c such that there are no negative-cost directed cycles. Let $r,s \in V$. Prove that:

 $\min\{c(P): P \text{ is a path from } r \text{ to } s\} = \max\{y_s: y \text{ is a feasible potential.}\}$

5. Show that the maximization above is equivalent to the following linear programming problem \mathcal{P} :

$$\max y_s - y_r$$
$$y_w - y_v \le c_{vw} \quad \forall \ vw \in E$$

- **6.** Write the dual \mathcal{D} of \mathcal{P} , and show that:
 - any path from r to s provides a feasible solution to \mathcal{D} .
 - \mathcal{D} has an optimal solution that is the characteristic vector of a simple path.