
Optimization Methods in Finance (EPFL, Fall 2010)

Lecture 10: The knapsack problem
24.11.2010

Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula

The knapsack problem

The Knapsack problem is a problem of how to choose items to maximize their value under a
constraint of maximal weight. Let’s assume that we can choose from items 1, ...,n with weights
a1,a2, ...,an and profitsp1, p2, ..., pn. The capacity of the knapsackK ∈ N is also given. The task
is now to select a subset of the items so that its total weight does not exceedK and its profit is
maximized among those subsets.

The integer program formulation of the knapsack problem is the following.

∀i = 1, ...,n we have a variablexi ∈ {0,1}

xi =

{

1 ”pick the item”
0 ”don’t”

max
n

∑
i=1

pixi

s.t.
n

∑
i=1

aixi ≤ K

xi ∈ {0,1} ∀i = 1, ...n

We can see that by replacing the last constraint with 0≤ xi ≤ 1 we would get a linear program.

Example 1 (A capital budgeting problem). We want to invest $19’000 to different unsplittable
opportunities and we aim, of course, to maximize our profit without exceeding the budget. The
fact that the investments cannot be split makes this a knapsack problem. Suppose that we know
the investments needed and their net present values. These are presented in Table 1.

Table 1: Investments and net present values of the opportunities
opportunity investment net present value

1 6’700 8’000
2 10’000 11’000
3 5’500 6’000
4 3’800 4’000

1

The mathematical formulation of this knapsack problem is (the numbers are thousands)

max 8x1+11x2+6x3+4x4

s.t. 6.7x1+10x2+5.5x3+3.8x4 ≤ 19

x1,x2,x3,x4 ∈ {0,1}.

In other words, we maximize the profit under the budget constraint. Here again,x1 = 1 means that
you choose investment 1.

Dynamic program for knapsack problem

Now we will construct a dynamic program for solving the knapsack problem. Let’s introduce
variableWi(p) which denotes the smallest possible weight of a subset of theitems 1, ..., i that has
a total profitp. These values are the shortest path distances in a graph witha starting nodes. The
graph is constructed such that each node has two valuesi and p and from node(i, p) there exist
two arcs to nodes(i+1, p) and(i+1, p+ pi+1) as illustrated in Figure 1. The weights of the arcs
are 0 (meaning that we don’t choose this item) andai+1 respectively.

Figure 1: Part of the graph

The total number of nodes in this graph is #(nodes)≤ n · (n · pmax) = n2 · pmax, and the number
of arcs #(arcs) ≤ 2n2 · pmax, wherepmax denotes the largest profit ofpi i = 1, ...,n. The graph is
directed and acyclyc (no cycles) and the starting node iss = (0,0).

Theorem 2. The knapsack problem can be solved in time O(n2 · pmax).

Proof. We start by computing the shortest path labels (weights) from s to all other nodes. A node
is feasible if the weight of the path leading to it doesn’t exceed the capacityK of the knapsack. The
shortest path to a feasible node with the largest second componentp (profit) represents the optimal
solution.

Let’s consider the following example to impliment the algorithm for the knapsack problem.

Example 3.

max 2x1+2x2+ x3

s.t. 2x1+ x2+2x3 ≤ 4

x1,x2,x3 ∈ {0,1}.

2

To solve this knapsack problem we construct the graph presented in Figure 2.

Figure 2: Solving the knapsack problem

First we draw all the nodes that we might need. Then, startingfrom the node(0,0), we add
arcs to those nodes that are reachable. In this case we can either choose item 1 (arc to node (1,2)
with weight 2) or NOT choose it (arc to node (1,0) with weight 0). Choosing item 1 leads us to
node (1,2) because item 1 has a profit ofp1 = 2. Applying this rule for the other items, we obtain
the arcs illustrated in figure 2. The number next to an arc denotes the weight of the item chosen (or
0 if we did not choose it).

Next we add the labels denoting the weight of the shortest path from the starting node to the
node in question. These labels are marked with the smaller numbers above the nodes. For the
unreachable nodes we give label value∞. Now we can delete the nodes that have a label value
larger than the capacity of the knapsack (4 in this case). This way we have only the possible nodes
to work with.

From these feasible nodes we now search the one with the largest second component (the profit)
and this is the optimal solution to the knapsack problem. Here the largest profit is 4 and we reach
it at nodes (2,4) and (3,4), which actually mean the same solution. From the shortest path leading
to these nodes we can conclude that we must choose items 1 and 2(x=(1,1,0)).

The knapsack problem cannot be efficiently solved in a complexity theoretic sence, meaning
in polynomial time, unless we have equivalence between problem classesP = NP. Thus, it would
be useful to find a reasonable approximation.

3

Approximation of the knapsack problem

For a givenε > 0, our goal is to, find a feasible solutionx of the knapsack problem

max pT x

s.t. aT x ≤ K (I)

i = 1, ...,n : xi ∈ {0,1}

so that(1+ ε)pT x ≥ pT x for every feasiblex. We also want the algorithm to be polynomial in1
ε

andn.

This is possible to achieve as follows. Suppose that

2ℓ−1 < pmax≤ 2ℓ for someℓ ∈ N.

And let’s rewritep as a sum of two parts

p = 2k p1+ p2 with p1, p2 ∈ N
n
0 s.th.‖p2‖∞ ≤ 2k −1.

The solution to the knapsack problem

max pT
1 x

s.t. aT x ≤ K (II)

i = 1, ...,n : xi ∈ {0,1}.

can be found in timeO(2ℓ−k ·n2).

Now we can compare the optimal solutions of (I) and (II). Let ˆx andx be the optimal solutions
of (I) and (II) respectively. For the ratio of these two objective functions we obtain the following.

pT x̂
pT x

=
pT (x̂− x)+ pT x

pT x

= 1+
pT (x̂− x)

pT x

≤ 1+
pT (x̂− x)

(p1)max·2k (∗)

≤ 1+
pT (x̂− x)

2ℓ−1

= 1+
2k · pT

1 (x̂− x)+ pT
2 (x̂− x)

2ℓ−1

≤ 1+
n ·2k

2ℓ−1

4

In (∗), usepT
1 x ≥ (p1)max and

pT x = (2k p1+ p2)
T x ≥ 2k pT

1 x ≥ 2k(p1)max.

We want to know when this ratio is less or equal to 1+ ε, and thus we get

n ·2k

2ℓ−1 ≤ ε

which can also be stated as
2ℓ−k−1

n
≥

1
ε
.

We have now shown that the running time of (II) is polynomial in 1
ε andn. This is actually a very

good approximation.

Integer programming & Branch and bound

An integer program (IP) is a problem of the form

maxcT x

s.t. Ax ≤ b

x is integer

Example 4 (Combinatorial auctions). An auctioneer is selling itemsM = {1, ...,m}. A bid is a
pair B j = (s j, p j), wheres j ⊆ M is a subset of the items andp j ∈ R is the price. The question
needed to be answered is: How should the auctioneer determine the winners and the loosers of the
bidding in order to maximize his revenue?

Let’s consider an example case of the combinatorial auctions.

M = {1,2,3,4}

Bids: B1 = ({1},6), B2 = ({2},3)

B3 = ({3,4},12), B4 = ({1,3},12)

B5 = ({2,4},8), B6 = ({1,3,4},16)

We now define a variablexi as follows.

xi =

{

0, if bid i is not served
1, if bid i is served

Bid i being served means that the bidder gets the items.

5

Now we can write an integer program to maximize the revenue ofthe auctioneer. The con-
straints describe the fact that every item can be sold to onlyone bidder.

max 6x1+3x2+12x3+12x4+8x5+16x6

s.t. x1+ x4+ x6 ≤ 1

x2+ x5 ≤ 1

x3+ x4+ x6 ≤ 1

x3+ x5+ x6 ≤ 1

xi ∈ {0,1}, i = 1, ...,6

Next time we will discuss how this can be solved.

6

