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The knapsack problem

The Knapsack problem is a problem of how to choose items to maximize their valueeural
constraint of maximal weight. Let's assume that we can cadiasn items 1...,n with weights
ai, ay,...,an and profitspy, po, ..., pn. The capacity of the knapsa&ke N is also given. The task
is now to select a subset of the items so that its total weighsdot excee& and its profit is
maximized among those subsets.

The integer program formulation of the knapsack problerhesfollowing.
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We can see that by replacing the last constraint withX) < 1 we would get a linear program.

Example 1 (A capital budgeting problem)We want to invest $19°000 to different unsplittable
opportunities and we aim, of course, to maximize our profthaut exceeding the budget. The
fact that the investments cannot be split makes this a kokgsablem. Suppose that we know
the investments needed and their net present values. Theepeeaented in Table 1.

Table 1: Investments and net present values of the opptdsini

opportunity| investment| net present value
1 6’700 8'000
2 10’000 11'000
3 5’500 6’000
4 3'800 4’000




The mathematical formulation of this knapsack problemhie (tumbers are thousands)

max 81 + 11xo + 6X3 + 4x4
S.t. 67x1+10x+5.5x34+3.8x4 < 19

X1,X2,X3,%4 € {0,1}.

In other words, we maximize the profit under the budget cairgtrHere agairng; = 1 means that
you choose investment 1.

Dynamic program for knapsack problem

Now we will construct a dynamic program for solving the kreqds problem. Let’s introduce
variableW (p) which denotes the smallest possible weight of a subset dfdires 1 ...,i that has

a total profitp. These values are the shortest path distances in a grapla wi#inting nods. The
graph is constructed such that each node has two valedp and from nod€gi, p) there exist
two arcs to node§ + 1, p) and(i + 1, p+ pi+1) as illustrated in Figure 1. The weights of the arcs
are 0 (meaning that we don’t choose this item) and respectively.

Figure 1: Part of the graph

The total number of nodes in this graph igi&des) < n- (N- Pmax) = N? - Pmax, and the number
of arcs #arcs) < 2n°- prax, Wherepmax denotes the largest profit @f i = 1,....n. The graph is
directed and acyclyc (no cycles) and the starting node=g0,0).

Theorem 2. The knapsack problem can be solved in time O(n? - Prax).

Proof. We start by computing the shortest path labels (weightsh 8¢o all other nodes. A node
is feasible if the weight of the path leading to it doesn’t@ad the capaciti{ of the knapsack. The
shortest path to a feasible node with the largest second @oempp (profit) represents the optimal
solution. O

Let’s consider the following example to impliment the aligom for the knapsack problem.
Example 3.

max X + 2Xo + X3
st. 2+X+2%3<4
X1,X2,%3 € {0, 1}.
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To solve this knapsack problem we construct the graph predem Figure 2.

Figure 2: Solving the knapsack problem

First we draw all the nodes that we might need. Then, staftorg the nodg0,0), we add
arcs to those nodes that are reachable. In this case we ban diibose item 1 (arc to node (1,2)
with weight 2) or NOT choose it (arc to node (1,0) with weight Choosing item 1 leads us to
node (1,2) because item 1 has a profipet= 2. Applying this rule for the other items, we obtain
the arcs illustrated in figure 2. The number next to an arc stbe weight of the item chosen (or
0 if we did not choose it).

Next we add the labels denoting the weight of the shortest fpatn the starting node to the
node in question. These labels are marked with the small@bets above the nodes. For the
unreachable nodes we give label vatae Now we can delete the nodes that have a label value
larger than the capacity of the knapsack (4 in this case Wwhy we have only the possible nodes
to work with.

From these feasible nodes we now search the one with thestag@nd component (the profit)
and this is the optimal solution to the knapsack problem eHllee largest profit is 4 and we reach
it at nodes (2,4) and (3,4), which actually mean the samdisalu~rom the shortest path leading
to these nodes we can conclude that we must choose items 1(&r@.2,0)).

The knapsack problem cannot be efficiently solved in a coxitgl¢heoretic sence, meaning
in polynomial time, unless we have equivalence betweenlgnoblasse® = NP. Thus, it would
be useful to find a reasonable approximation.



Approximation of the knapsack problem

For a givens > 0, our goal is to, find a feasible soluti@of the knapsack problem

maxp' x
st.a'x<K (1)
i=1..n:x€{01}

so that(1+ &)pTx > p'x for every feasiblex. We also want the algorithm to be polynomialjn
andn.

This is possible to achieve as follows. Suppose that
271 < pmax< 2 for somef € N.
And let’s rewritep as a sum of two parts
p=2pr+pz with pr,p2 € N§  s.th.||pafle < 2¢—1.

The solution to the knapsack problem

max pj x

st. a'x<K (1

i=1..n:x€{0,1}.

can be found in tim®©(2/~%. n?).

Now we can compare the optimal solutions of (1) and (). keindx be the optimal solutions
of (I) and (ll) respectively. For the ratio of these two olijee functions we obtain the following.




In (x), usep;X > (P1)maxand
p'X = (2p1+ p2) "X > 2p[X > 2(p1)max
We want to know when this ratio is less or equal t¢ &, and thus we get

n~2'<<
26—1 €

which can also be stated as
2€—k—1

1
> =
n &

We have now shown that the running time of (ll) is polynomfra%iandn. This is actually a very
good approximation.

|nteger programming & Branch and bound
An integer program (IP) is a problem of the form

maxc' x
st. Ax<b
X is integer

Example 4 (Combinatorial auctions)An auctioneer is selling iteml = {1,....m}. A bid is a
pair B; = (sj, pj), wheres; C M is a subset of the items arg < R is the price. The question
needed to be answered is: How should the auctioneer detetherwinners and the loosers of the
bidding in order to maximize his revenue?

Let's consider an example case of the combinatorial austion

M ={1,2,3,4}
Bids: By =({1},6), B2=({2}.3)
Bz = ({374}712)7 Ba = ({173}712)
B5: ({274}78)7 BGZ({17374}716>
We now define a variabbg as follows.

~ | 0, ifbidiis notserved
| 1, ifbidiis served

Bid i being served means that the bidder gets the items.



Now we can write an integer program to maximize the revenud®fauctioneer. The con-
straints describe the fact that every item can be sold to améybidder.

max &1 + 3xo + 12x3 + 12X4 + 8x5 + 16xg
St.Xa+X+X% <1
Xo+x5<1
X3+X4+Xe <1
X3+X5+Xe <1
xi€{0,1},i=1,....6

Next time we will discuss how this can be solved.



