Optimization Methods in Finance

(EPFL, Fall 2010)

Lecture 4: Online portfolio selection & Mean variance portfolio optimization 13.10.2010

Lecturer: Friedrich Eisenbrand Scribe: Sezin Afşar

Recap

Let y^0, \dots, y^{T-1} be price relatives. The return of a portfolio $x^t \in \Sigma^N$ over time horizon [0, T] is

$$\prod_{t=0}^{T-1} y^t x^t$$

A best *constant-rebalanced portfolio* is a vector $x \in \Sigma^N$ attaining

$$\min_{x \in \Sigma^N} \frac{1}{T} \sum_{t=0}^{T-1} -\ln(y^t x)$$

Our goal is to prove the following theorem:

Theorem 1. One can compute an online strategy $x_0, ..., x_{T-1} \in \Sigma^N$ such that

$$\frac{1}{T} \sum_{t=0}^{T-1} \left(\ln(y^t x^*) - \ln(y^t x^t) \right) \le 4\rho \sqrt{\frac{\ln(N)}{T}}$$

for any $x^* \in \Sigma^N$, where ρ is a bound on $\frac{y_i^t}{y_j^t} \forall i, j, t$.

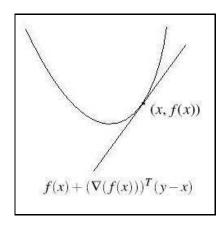
Remark: The left-hand side of the inequality is referred as *average regret*. Recall that *the first order condition of convexity* is as follows:

Lemma 2. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and $dom(f) \subseteq \mathbb{R}^n$ is convex. Then,

$$f$$
 is convex $\iff \forall x, y \in dom(f) : f(y) \ge f(x) + (\nabla f(x))^T (y - x)$

Note that the function $f_t: \Sigma^N \to \mathbb{R}$ with $f_t(x) = -\ln(x^T y^t)$ is convex. For any $x \in \Sigma^N$, set ρ as $\|\nabla f_t(x)\|_{\infty} \le \max \frac{y_i^t}{y_j^t} =: \rho \ \forall i, j, t$.

Figure 1: Illustration of Lemma 1.2



Online Portfolio Selection Using RWMA

Theorem 3. (Reinterpretation of 1) Let $f_t: \Sigma^N \to \mathbb{R}$ be convex and differentiable for t = 0, ..., T-1. One can compute $p_0, ..., p_{T-1} \in \Sigma^N$ online such that $\forall p^* \in \Sigma^N$,

$$\frac{1}{T} \sum_{t=0}^{T-1} \left[f_t(p_t) - f_t(p^*) \right] \le 4\rho \sqrt{\frac{\ln(N)}{T}}, \text{ where } \rho \ge \max_{t, x \in \Sigma^N} \|\nabla f_t(x)\|_{\infty}$$

Proof. To obtain such a sequence, will will apply again the randomized weighted majority algorithm. We use the following setting: The pure portfolios e_1, \ldots, e_N are the N experts. At time t

- $p_t \in \Sigma^N$ is the distribution on experts $\{1, ..., N\}$ (induced by the exponential weights)
- As loss vector, we choose $\ell^t = \nabla f_t(p_t)$, where $\nabla f_t(p_t) \in [-\rho, \rho]^N$.

Recall that

$$E[\hat{L}] \leq \frac{\rho \ln(N)}{\epsilon} + (1 + \epsilon)L_{+}^{j} + (1 - \epsilon)L_{-}^{j}, \text{ where } L_{+}^{j} = \sum_{t=0; \ell_{i}^{j} \geq 0}^{T-1} \ell_{j}^{t}, L_{-}^{j} = \sum_{t=0; \ell_{i}^{j} < 0}^{T-1} \ell_{j}^{t}$$

In our setting,

$$\frac{E[\hat{L}]}{T} \leq \frac{\rho \ln(N)}{\epsilon T} + (1+\epsilon) \frac{L_{+}^{j}}{T} + (1-\epsilon) \frac{L_{-}^{j}}{T}$$

$$= \frac{\rho \ln(N)}{\epsilon T} + (1+\epsilon) \frac{(L_{+}^{j} + L_{-}^{j})}{T} - \frac{2\epsilon L_{-}^{j}}{T}$$

$$\leq \frac{\rho \ln(N)}{\epsilon T} + (1+\epsilon) \frac{(L^{j})}{T} + 2\epsilon \rho \quad (\star)$$

Here we used in (\star) that $\frac{L_j^j}{T} \ge -\rho$ and hence $-2\epsilon \frac{L_j^j}{T} \le 2\epsilon \rho$. We obtain

$$\frac{E[\hat{L}] - L^j}{T} \le \frac{\rho \ln(N)}{\epsilon T} + 3\epsilon \rho$$

We use this bound on the loss of the imaginery forecaster as follows:

$$\frac{1}{T} \sum_{t=0}^{T-1} (f_t(p_t) - f_t(p^*)) \stackrel{(\star \star)}{\leq} \frac{1}{T} \sum_{t=0}^{T-1} ((\nabla f_t(p_t))^T (p_t - p^*))$$

$$= \frac{1}{T} \sum_{t=0}^{T-1} ((\nabla f_t(p_t))^T p_t - (\nabla f_t(p_t))^T p^*)$$

$$= \frac{E[\hat{L}]}{T} - \sum_{t=0}^{T-1} (\nabla f_t(p_t))^T p^*$$

$$\leq \frac{E[\hat{L}] - L^j}{T}$$

for some j. In $(\star\star)$ we used the first order condition $f(y) \ge f(x) + (\nabla f(x))^T (y-x)$ (and consequently $f(x) - f(y) \le (\nabla f(x))^T (x-y)$). Note that

$$\frac{E[\hat{L}] - L^j}{T} \le \frac{\rho \ln(N)}{\epsilon T} + 3\epsilon \rho \le 4\rho \varepsilon$$

if we choose $\epsilon := \sqrt{\frac{\ln(N)}{T}}$.

Remark: A proof of the First-Order Condition can be found e.g. in the book "Convex Optimization". ¹.

Suppose we have to solve:

 $\min_{x \in \Sigma^N} f(x)$ where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable.

Use the setting from before with $f_t := f \ \forall t = 0, ..., T-1$.

Theorem 4. With the RWMA, one can compute an $x^* \in \Sigma^N$ such that

$$f(x^*) - f(x) \le \delta \text{ for all } x \in \Sigma^N \text{ with } T = \left(\frac{4\rho}{\delta}\right)^2 \ln(N).$$

Proof. Use p_t from theorem before with $f(p_t)$ minimal.

¹Stephen P. Boyd, Lieven Vandenberghe: Convex Optimization, Cambridge University Press, p.69-70 (2004).

Mean Variance Portfolio Optimization

The following method is based on the *diversification principle* of Harry Markowitz ². Note that Markowitz received the Nobel Prize in economics (1990).

Suppose that N assets are available. R_i is return of asset i. $R = \sum_{i=1}^{N} R_i x_i$ is return of portfolio $x \in \Sigma^N$. Using R = 1 + r, (r being relative return) and $\sum_{i=1}^{N} x_i r_i$ is relative return of portfolio.

Basic notions of probability

- If x is a random variable over a finite probability space, then expected value of x, E[x] or \bar{x} , is defined as $E[x] = \sum_i p_i x_i$, where p_i is the probability of x attaining the value x_i .
- Linearity of expectation: x, y are random variables, $\alpha, \beta \in \mathbb{R}$, then $E[\alpha x + \beta y = \alpha E[x] + \beta E[y]$.
- *Variance:* $Var(x) = E[(x \bar{x})^2] = E[x^2] E[x]^2$.
- Standart deviation: $\sigma(x) = \sqrt{\text{Var}(x)}$.

Example 5. Rolling a dice $(x \in \{1, ..., 6\})$

$$- E[x] = 3.5$$

$$- E[x^2] = (1/6)(1+4+9+16+25+36)$$

$$- Var[x] = 2.29$$

- Covariance: $Cov(x,y) = E[(x-\bar{x})(y-\bar{y})] = E[xy] \bar{x}\bar{y}$.
- *Correlation:* Corr $(x,y) = \rho(x,y) = \frac{\text{Cov}(x,y)}{\sigma(x)\sigma(y)}$. Observe that $|\rho(x,y)| \le 1$.
 - uncorrelated: $\rho(x,y) = 0$
 - positively correlated: $\rho(x, y) > 0$
 - negatively correlated: $\rho(x, y) < 0$
- *Variance of sum:* Let $x_1, ..., x_n$ be random variables. Then

$$\operatorname{Var}\left[\sum_{i=1}^{n} x_{i}\right] = E\left[\sum_{i=1}^{n} (x_{i} - \bar{x}_{i})\right]^{2}$$

$$= E\left[\sum_{i,j} (x_{i} - \bar{x}_{i})(x_{j} - \bar{x}_{j})\right]$$

$$= E\left[\sum_{i,j} x_{i}x_{j} - x_{i}\bar{x}_{j} - \bar{x}_{i}x_{j} + \bar{x}_{i}\bar{x}_{j}\right]$$

$$= \sum_{i,j} E[x_{i}x_{j}] - \bar{x}_{i}\bar{x}_{j}$$

$$= \sum_{i,j} \operatorname{Cov}(x_{i}, x_{j})$$

²Markowitz, H., 1952. Portfolio selection. Journal of Finance 7, p.77-91.