
DISCRETE OPTIMIZATION Spring 2010
PROF. F. EISENBRAND 06.05.2010Sample exam

Last name: First name:

Exercise: 1 2 3 4 5 6 7 8 Σ

max points: 10 10 10 10 10 10 10 10 50
achieved points:
chosen exercises:

Check whether the exam is complete: It should have 9 pages (Exercises 1–8). Write your name on the title
page. Solutions have to be written below the exercises. Solutions must be comprehensible. In case of lack of
space, you can ask for additional paper from the exam supervision. Please put your name on each additional
sheet and indicate which exercise it belongs to.

Use neither pencil nor red colored pen!

Duration: 120 min

Grading:
Every exercise gives 10 points, and you are supposed to solve 5 of them. There are 6 exercises marked
with [∗] and two exercises marked with [∆]. Math students can choose among the [∗]-exercises. Non-math
students can choose among all exercises. Please mark the 5 exercises you have chosen in the tabular
above!

You are allowed to bring a pocket calculator and an A4-“cheat-sheet”.
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Exercise 1 [∗]: (Multiple Choice, points {−1,0,1} each)
No justifications needed. Mark ’yes’ or ’no’. Wrong answers cause negative points!

a) A set C⊆Rn is convex if and only if λx+(1−λ )y ∈C for any x,y ∈C and
λ ∈ R.

◦ yes ◦ no

b) One has

min{cT x | Ax = b, x≥ 0}= max{bT y | AT y≤ c}

given that both linear programs are feasible (A ∈ Rm×n,b ∈ Rm,c ∈ Rn).

◦ yes ◦ no

c) Given a linear program

max{cT x | Ax≤ b},

with A∈Rm×n,b∈Rm,c∈Rn. If the LP is feasible and bounded, then there
is a roof B such that its vertex is an optimal solution to the LP.

◦ yes ◦ no

d) Given a matrix A ∈ Zm×n with m ≥ 2. Let A′ ∈ Zm×n be a matrix obtained
from A by the elementary row operation of adding an integer multiple of row
1 to row 2. A is totally unimodular if and only if A′ is totally unimodular.

◦ yes ◦ no

e) Given a linear program

max{cT x | Ax≤ b},

with A ∈ Rm×n,b ∈ Rm,c ∈ Rn. If the LP is feasible and bounded, then
there is a an optimal solution x to the LP such that at most m entries of x are
nonzero.

◦ yes ◦ no

f) Given a linear program

max{cT x | Ax≤ b},

with A ∈Rm×n,b ∈Rm,c ∈Rn. If x(1) and x(2) are optimal solutions for the
LP, then every vector x ∈ conv(x(1), x(2)) is optimal.

◦ yes ◦ no

g) For any graph G = (V,E), its node-edge incidence matrix is totally unimo-
dular.

◦ yes ◦ no

h) Let A ∈Rm×n,b ∈Rm. If there is a λ ∈Rm such that AT λ ≥ 0 and bT λ < 0,
then the system Ax = b, x≥ 0 is infeasible.

◦ yes ◦ no

i) Given a directed graph G = (V,A) and a node v ∈ V , a shortest path tree
rooted in v can be computed in time O(|V |+ |A|).

◦ yes ◦ no

j) There is a linear program

max{cT x : Ax≤ b},

with A ∈ Rm×n,b ∈ Rm,c ∈ Rn such that both the LP and its dual are infea-
sible.

◦ yes ◦ no
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Exercise 2 [∗] (LP duality):

Consider the following linear program:

min 2x1 + 2x2 + 4x3
x1 + 2x2 + 4x3 = 20
−x1 + 3x3 ≤ 10

− 2x2 + x3 ≥ 3
4x1 + x2 ≤ 40
x1 − 10x2 + x3 ≥ −3

(1)

(a) Transform LP (1) to (inequality ) standard form.

(b) Write down a dual of the LP in standard form.

(c) Show that x∗ := (19
8 , 9

16 , 33
8 )T is an optimal solution for the LP (1) by giving a suitable solution for the

dual LP (Hint: Use the complementary slackness theorem you have seen in the exercises: Given an
optimal solution x∗ for the primal, there is an optimal solution y∗ for the dual such that y∗i = 0 for all
rows i of the primal that are not satisfied with equality by x∗).
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Solution:

(a) The LP in inequality standard form looks as follows:

max −2x1 − 2x2 − 4x3
x1 + 2x2 + 4x3 ≤ 20
−x1 − 2x2 − 4x3 ≤ −20
−x1 + 3x3 ≤ 10

2x2 − x3 ≤ −3
4x1 + x2 ≤ 40
−x1 + 10x2 − x3 ≤ 3

(b) A dual is:

min 20y1 − 20y2 + 10y3 − 3y4 + 40y5 + 3y6
y1 − y2 − y3 + 4y5 − y6 = −2
2y1 − 2y2 + 2y4 + y5 + 10y6 = −2
4y1 − 4y2 + 3y3 − y4 − y6 = −4
y1 , y2 , y3 , y4 , y5 , y6 ≥ 0

(c) We see that x∗ is a feasible solution as all constraints are satisfied. The first four constraints are
satisfied with equality, whereas the last 2 constraints are satisfied with strict inequality. From the
complementary slackness theorem we know that if x∗ is optimal, then the dual has an optimal solution
where y5 = y6 = 0.

Thus consider the system

y1 − y2 − y3 = −2
2y1 − 2y2 + 2y4 = −2
4y1 − 4y2 + 3y3 − y4 = −4

The first two columns are linearly dependent, thus we omit column 2 and consider the system:

y1 − y3 = −2
2y1 + 2y4 = −2
4y1 + 3y3 − y4 = −4

We see that y1 = −11
8 , y3 = 5

8 and y4 = 3
8 is the solution to the system. This implies that y =

(0, 11
8 , 5

8 , 3
8 ,0,0) is a feasible solution of the dual. Its objective value is −179

8 as the objective value
of x∗ for the primal. This asserts that x∗ is optimal.

Use reverse side if you need more space
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Exercise 3 [∆] (IP modeling):

Consider the following transportation problem: F is a set of warehouses that are owned by our company,
G is a set of different goods and C is a set of clients (all sets are finite). Let si j ≥ 0 be the amount of good
i∈G, that is available in warehouse j ∈ F . Furthermore dik ≥ 0 denotes the amount of good i∈G, that client
k ∈C requests. It costs ci jk ≥ 0 to transport one unit of good i ∈G from warehouse j ∈ F to customer k ∈C.
All quantities are integer. (We assume that the costs grow linear with the amount and goods are splittable in
integer quantities). Formulate an integer program that determines the cheapest way to transport the goods
to the clients such that: The demand of each client is satisfied and the supplies of the warehouses are not
exceeded. Explain the meaning of the variables you used.

Is the polyhedron of the linear programming relaxation integral? Justify your answer by giving an argument
why it is integer, or give a counterexample if it is not integer.

Solution:
We use decision variables

xi jk = amount of good i ∈ G which is transported from j ∈ F to k ∈C

Then the desired IP is

min ∑
i∈G

∑
j∈F

∑
k∈C

ci jkxi jk

∑
k∈C

xi jk ≤ si j ∀i ∈ G ∀ j ∈ F (supply not exceeded)

∑
j∈F

xi jk ≥ dik ∀i ∈ G ∀k ∈C (demand fulfilled)

xi jk ≥ 0 ∀i ∈ G ∀ j ∈ F ∀k ∈C (non-negativity)

x ∈ Z

Note that every variable xi jk appear in exactly one of the supply constraints, and in exactly one of the
demand constraints. Now consider the LP relaxation, and consider the matrix A corresponding to the supply
and demand constraints. Since each xi jk appears exactly in one supply and one demand constraint, we have
that each column of the matrix has exactly two 1-entries. Moreover, one of the entries belongs to a “supply
row“ and the other one belongs to the ”demand row“. Hence A has the structure of a node-edge incidence
matrix of a bipartite graph. Thus A is totally unimodular. The full matrix of the LP relaxation is of the form

B :=
(

A
In

)
where n = |F | · |G| · |C|. Hence B is totally unimodular as well, and we conclude that the linear programming
relaxation is integral.

Use reverse side if you need more space
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Exercise 4 [∗] (Roofs):

Consider a linear program
max{cT x : Ax≤ b}

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn.
Let B ⊆ {1, . . . ,m} be a subset of row indexes of A such that |B| = n and AB has full rank. Show that if
c ∈ cone(ai : i ∈ B), then B is a roof

Solution:
A solution is given in the lecture notes in the proof of Lemma 3.2.

Use reverse side if you need more space
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Exercise 5 [∗] (Simplex algorithm):

Consider the following LP:

max 2y1 + 2y2 + 4y3
y1 − 2y2 + 2y3 ≤ −1

3y1 − 2y2 + 4y3 ≤ −3
y1 ≤ 0
y2 ≤ 0
y3 ≤ 0

Solve the LP using the simplex method.
Start with the roof B = {3,4,5}.
For each iteration of the simplex method, the violated constraint that should enter the roof, the constraint
that has to leave the roof, the new roof and its vertex.
Also write down an optimal solution and its value. On the next page, you find the inverse matrices for all
possible roofs.

Solution:
Let A be the matrix of the LP. We start with the roof B = {3,4,5}. The corresponding vertex solution is
y = (0,0,0)T . The conic combination of c is c = µ1 ·a3 + µ2 ·a4 + µ3 ·a5 with µ = (2,2,4).
Both constraints 1 and 2 are violated. We choose 1 to enter the roof. Hence we compute a solution to the
system

λ1a3 +λ2a4 +λ3a5 +a1 = 0,

which is λ = (−1,2,−2). We have− µ1
λ1

= 2 =− µ3
λ3

, thus we can choose whether 3 or 5 leaves the basis. We
choose 3. Hence we get the new conic combination c = µ1 ·a1 + µ2 ·a4 + µ3 ·a5 with µ = (2,6,8) and the
new roof is B = {1,4,5} with vertex solution y = (−1,0,0)T .
This solution satisfies all constraints, thus it is optimal. The objective value is −2.

Use reverse side if you need more space
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• B := {1,2,4}, A−1
B =

 −2 1 2
0 0 1
3
2 −1

2 2

.

• B := {1,3,4}, A−1
B =

 0 1 0
0 0 1
1
2 −1

2 1

.

• B := {1,4,5}, A−1
B =

 1 2 −2
0 1 0
0 0 1

.

• B := {2,4,5}, A−1
B =

 1
3

2
3 −4

3
0 1 0
0 0 1

.

• B := {3,4,5}, A−1
B =

 1 0 0
0 1 0
0 0 1

.
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Exercise 6 [∗] (Total unimodularity):

An interval matrix is a matrix M ∈ {0,1}m×n where in each row, the 1-entries appear as a consecutive block.
I.e. for each row i we have

∀ j,k, ` with j ≤ k ≤ ` : If M(i, j) = 1 and M(i, `) = 1, then M(i,k) = 1.

Prove that M is totally unimodular. (Hint: Elementary column operations might help)

Solution:
Note that interval matrices are closed under taking submatrices. Thus it is sufficient to show that if M is a
square matrix (i.e. n = m), then: det(M) ∈ {−1,0,1}.
We perform the following elementary column operations: For each i = n−1,n−2, . . . ,1, we subtract column
i from column i + 1. Let M′ be the resulting matrix. Clearyly det(M) = det(M′). Note that M′ has at most
one 1 entry and at most one −1 entry per row, all other entries are 0.
Otherwise, while there is a row with only one nonzero entry, we perform laplace expansion along that row,
until a submatrix M′′ remains with |det(M′′)|= |det(M′)|. If M′′ contains a zero-row, then det(M′) = 0 and
we are done. Otherwise, every row has exactly one 1 and one −1 entry. Thus the sum of the columns is the
zero vector, hence det(M′′) = 0.

Use reverse side if you need more space
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Exercise 7 [∗] (Vertices):

Let P = {x ∈ Rn : Ax≤ b} be a polyhedron and let x∗ ∈ P. You can assume that A is of full column rank.
Show that x∗ is a vertex of P if and only if there exists a set B⊆ {1, . . . ,m} such that |B|= n, AB is invertible
and ABx∗ = bB. Here the matrix AB and the vector bB consists of the rows of A indexed by B and the
components of b indexed by B respectively.

Solution:
“⇒”:
Let H := {x∈Rn : cT x = β} be the hyperplane that defines the vertex x∗, i.e. H∩P = {x∗}, and cT x≤ β for
all x ∈ P. Now consider the linear program max{cT x : Ax ≤ b}. By construction, x∗ is the unique optimal
solution for this LP. On the other hand, since the LP is bounded and of full column rank, the simplex
algorithm will compute an optimal solution that is a vertex of a roof. Thus x∗ is the vertex of a roof, and (ii)
follows.
“⇐”:
Note that x∗ is the vertex of the roof AB. Let c ∈ cone(AB) be a strictly positive conic combination of the
rows of AB. As seen in Exercise 5 on Sheet 2, the vertex x∗ of the roof AB is then a unique optimal solution to
the linear program max{cT x : ABx≤ bB}. Since x∗ ∈ P, this implies that x∗ is the unique optimal solution to
the linear program β := max{cT x : Ax≤ b}. Hence, cT x≤ β for all x∈ P and {x∈Rn : cT x = β}∩P = x∗.
Thus x∗ is a vertex.

Use reverse side if you need more space
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Exercise 8 [∆] (Max s− t-flows):

Consider the following graph G = (V,A). The labels on the arcs a ∈ A are of the form f (a)/u(a), i.e. they
define functions f : A→Q≥0 and u : A→Q≥0.

s

u

v

x

y

z

t

2/6

4/4

5/9

1/1

3/3

2/2

4/4

5/8

1/1

3/6

2/4

(a) Argue why f is a feasible s− t-flow in G subject to the capacities u. What is the value of the flow?

(b) Perform the Ford-Fulkerson algorithm to compute a maximum s− t-flow in G. For each iteration give
the residual network. You can start with the flow f . Give the flow, its value and a minimum s− t cut.

11



Solution:

(a) f is a flow since for all v ∈V − s, t we have f (δ in(v)) = f (δ in(v)). f is feasible since 0≤ f (a)≤ u(a)
for each a ∈ A.

(b) We start with the residual network corresponding to f .

4

2

4

3

3

1

4
5

1

2

2

3

5

2

3

An s− t-path is marked red. After augmenting we obtain the following residual network:

4

2

4

3

3

1

3
6

1 1

3

3

5

2

3

An s− t-path is marked red. After augmenting we obtain the following residual network:

3

3

4

2

4

1

3
6

1

4

3

5

2

3

s and t are not connected anymore. Thus we found the optimal s− t-flow f given as

f (s,u) = 3, f (s,v) = 4, f (s,x) = 6, f (u,y) = 3, f (v,u) = 0, f (v,z) = 4,

f (x,y) = 2, f (x,z) = 0, f (x, t) = 4, f (y, t) = 5, f (z, t) = 4.

of value 13. A min cut is given by the nodes {s,u,x}.

Use reverse side if you need more space
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