Weighted Digraphs and Tropical Cones

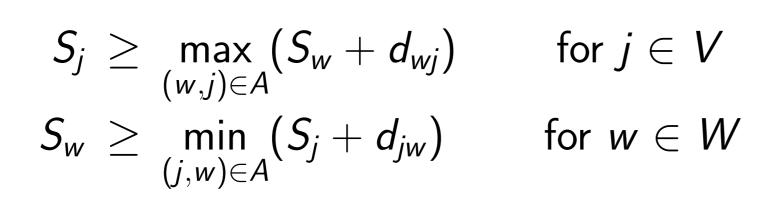
Michael Joswig and Georg Loho

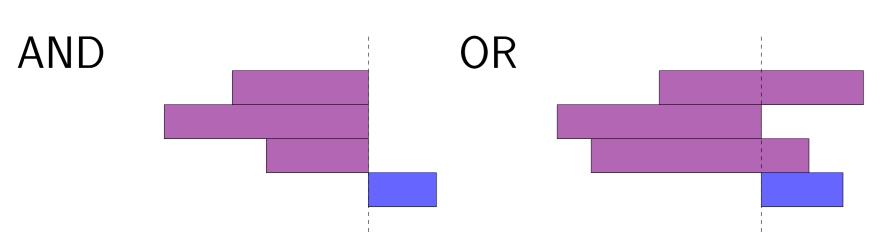
Scheduling with AND/OR precedence constraints

Network Given a set of jobs V (AND-nodes) and waiting conditions W (OR-nodes). They form a directed bipartite graph \mathcal{B} with the arc set A.

Processing times/ time lags integral weights $-M < d_{pq} < M$ for $(p,q) \in A$. Starting condition $S_i \ge 0$ for all $j \in V$.

Problem formulation





Tropical Polyhedra

Tropical numbers $\mathbb{T} = \mathbb{R}$, \mathbb{Q} or \mathbb{Z} each with ∞ Tropical operations $\oplus = \min$ and $\odot = +$ Remark: There is no additive inverse. Inequality systems Systems of the form $A \odot x \leq B \odot x$

define tropical polyhedra where $A \odot x = \left(\bigoplus_{k=1}^d a_{ik} \odot x_k \right)_i$

The following problems are polynomial time equivalent and belong to NP ∩ co-NP

- Finding a minimal schedule in a network with and/or-precedence constraints.
- Checking the feasibility of a tropical polyhedron.
- ► No polynomial time algorithm known
- ► Feasibility is equivalent to tropical linear programming, bisection or homogenization approach

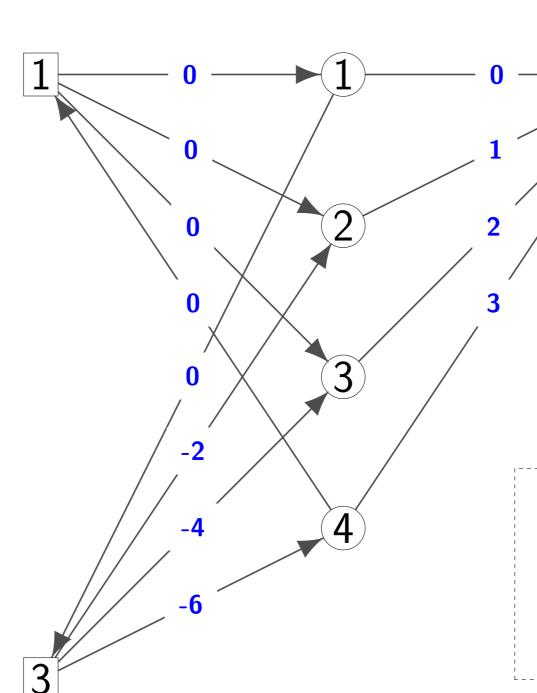
Theorem (J., L. 2015) _

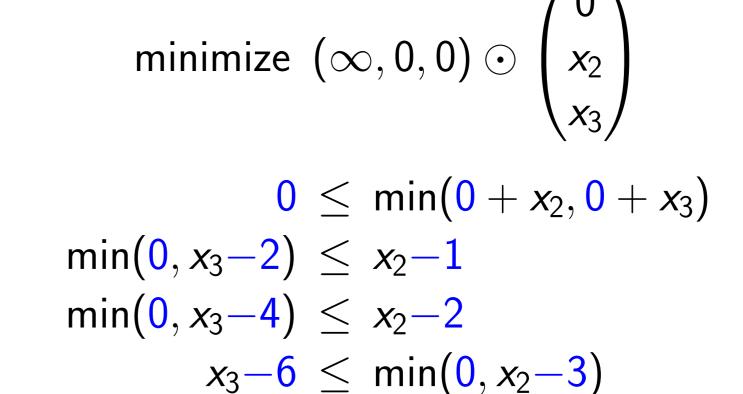
The set of feasible schedules is described by those bipartite subgraphs of ${\cal B}$ in which every node in W has at least one in-going arc. These subgraphs are directed covector graphs.

Theorem (J.,L. 2016+)

The orthogonal projection of the set of feasible schedules onto the coordinates in V is the tropical polyhedron given by

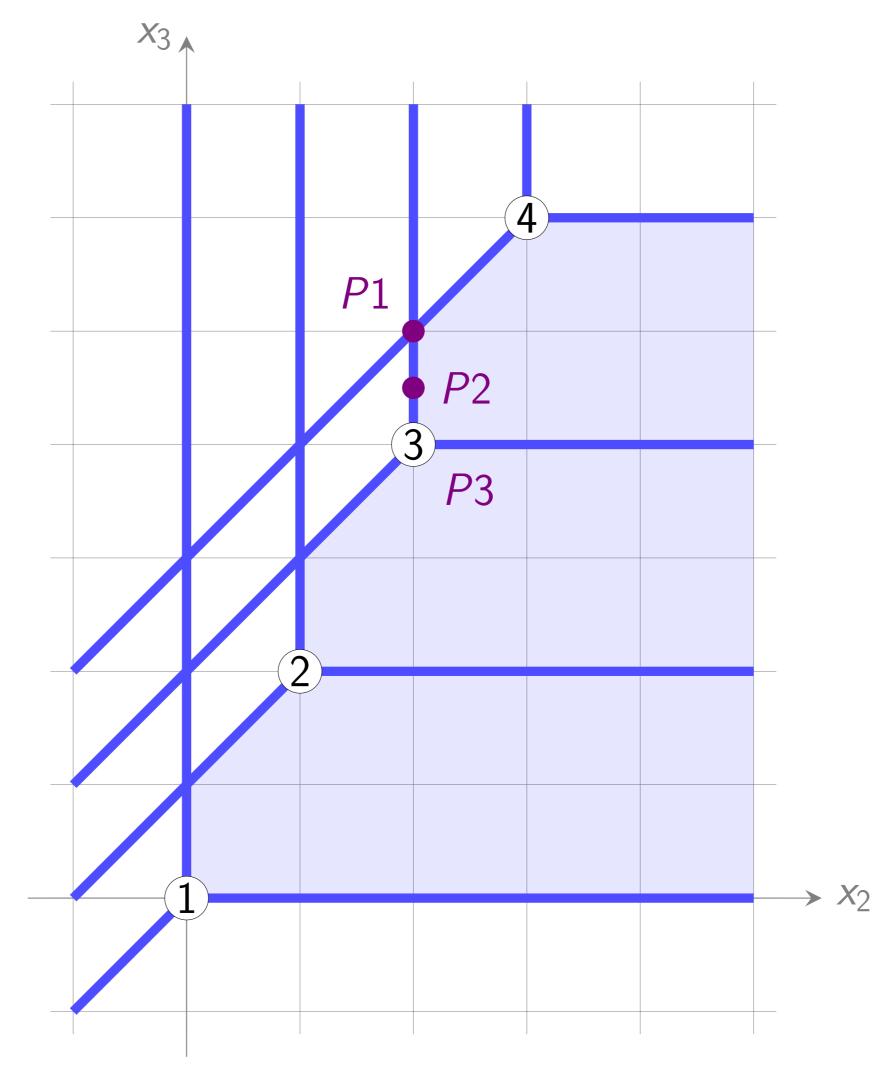
$$\min_{(w,j)\in A}(S_j-d_{wj})\geq \min_{(j,w)\in A}(S_j+d_{jw}) \quad \forall w\in W.$$





Weighted digraph polyhedron for ${\cal B}$

All the points $(y, z) \in \mathbb{R}^{V \cup W}$ with $y_i - z_w \le d_{iw}$ and $y_i - z_w \le d_{wj}$ for all arcs.



covector graphs describe the local geometry and position

Tropical covector graphs

A bipartite graph G on $V \sqcup W$ is a *covector graph* for a weight matrix $D \in (\mathbb{R} \cup \{\infty\})^{V \times W}$ if and only if the following are satisfied Minimality: for every pair of subsets $P \subseteq V$ and $Q \subseteq W$ with |P| = |Q|, every perfect matching of G restricted to $P \sqcup Q$ is a minimal matching of the complete bipartite graph $P \times Q$ with the weights given by the corresponding submatrix of D;

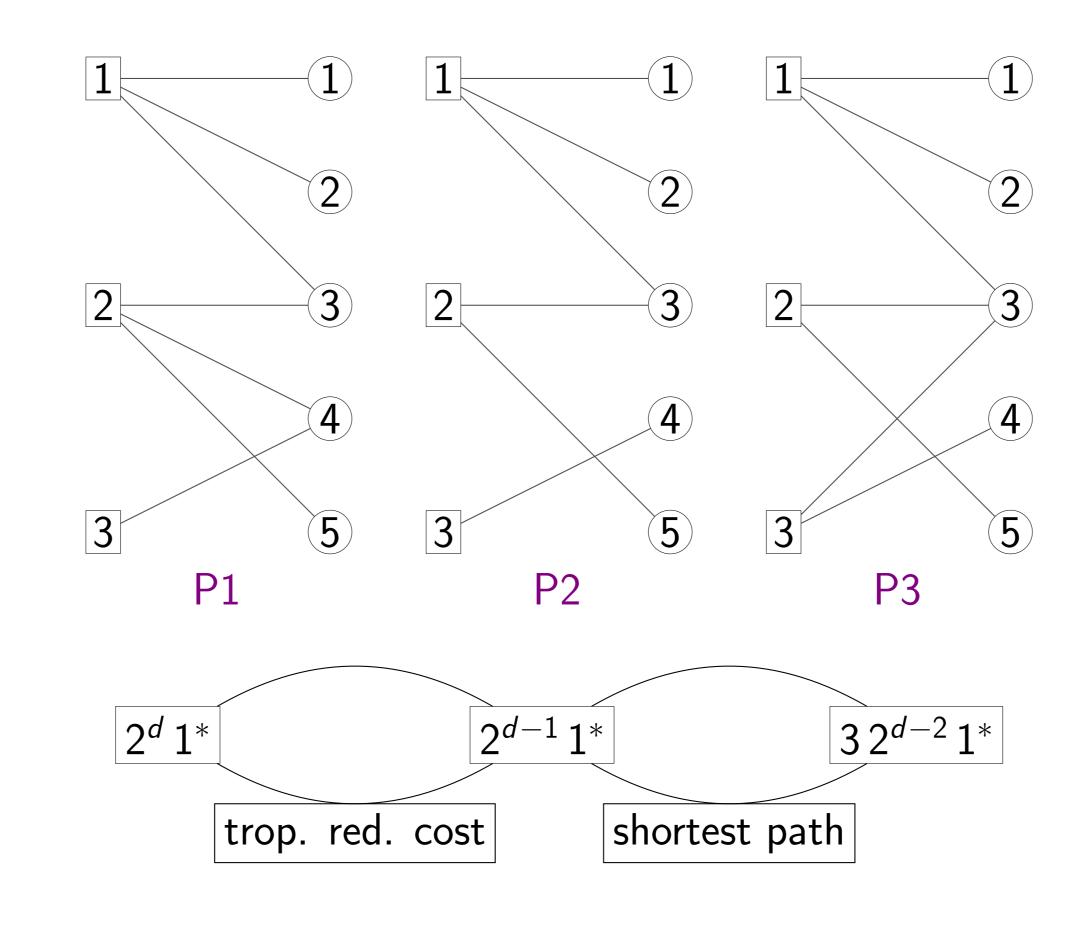
Completeness: if there are more minimal perfect matchings in $P \times Q$ then each of them is contained in G.

- Tropical oriented matroid
- Similar to graphs in the hungarian method
- Shortest path in bipartite graph

Tropical linear programming a graph algorithm

Theorem (Allamigeon, Benchimol, Gaubert, J.) For every generic instance of the tropical simplex method there is a classical analogue. Both are polynomial-time equivalent.

- New approach with promising complexity
- Relation between classical simplex method for arbitrary polyhedra and shortest path algorithms
- ► Genericity no restriction via symbolic perturbation



References

- ► Möhring, Rolf H. and Skutella, Martin and Stork, Frederik Scheduling with AND/OR precedence constraints, SIAM J. Comput. 33 (2004) 2
- Allamigeon, Xavier and Benchimol, Pascal and Gaubert, Stéphane and Joswig, Michael Combinatorial simplex algorithms can solve mean payoff games, SIAM J. Opt. 24 (2014) 4
- Joswig, Michael and Loho, Georg Weighted digraphs and tropical cones, Linear Algebra Appl. 501 (2016) 304-343