Lattices and Hermite normal form

February 17, 2009

1 Lattices

Let $B = \{b_1, b_2, ..., b_k\}$ be a set of linearly independent vectors in n-dimensional Euclidean space \mathbb{R}^n . The set of the form

$$\Lambda(B) := \left\{ \sum_{i=1}^{k} \lambda_i b_i : \lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{Z} \right\}$$

is called a *lattice* with *basis* B (or *generated by* B) and k is the *dimension* of $\Lambda(B)$. If k = n, we say that the lattice is *full-dimensional*. We shall mostly concentrate on full-dimensional lattices; otherwise we may apply an appropriate linear transformation and identify $\operatorname{span}(B)$ with \mathbb{R}^k .

Yet, the basis can compactly be represented as a square $n \times k$ -matrix (we also denote it by B) with vectors b_1, b_2, \ldots, b_n as columns. Then we can write

$$\Lambda(B) = \{Bx : x \in \mathbb{Z}^k\}. \tag{1}$$

We shall often interchange between different notation without mentioning this explicitly, but it should not cause any confusion; thus, B is either a set of vectors b_1, b_2, \ldots, b_k , or a matrix with columns b_1, b_2, \ldots, b_k , depending on the context. Trivially, the vectors b_1, b_2, \ldots, b_k are linearly independent if and only if the matrix B has full column rank, i.e., rank(B) = B, and they span B if and only if B has full row rank.

It is natural to ask about sets of the form (1) when vectors in B are not necessarily linearly independent. Is it still a lattice? In other words, are there linearly independent vectors generating the same set $\Lambda(B)$? In general, the answer is 'no': just consider the one-dimensional vectors $b_1 = [1]$ and $b_2 = [\sqrt{2}]$ and the corresponding set $\Lambda(b_1, b_2) = \{\lambda_1 + \lambda_2 \sqrt{2} : \lambda_1, \lambda_2 \in \mathbb{Z}\}$. However, if we restrict ourselves onto rational vectors only, then the answer is 'yes', as we shall see a little later. We shall also see that lattices are exactly the discrete subgroups of \mathbb{R}^n (a group Λ is called *discrete* if there is a neighbourhood of the origin containing no elements from $\Lambda \setminus \{0\}$ —clearly, this property does not hold for our example $\{\lambda_1 + \lambda_2 \sqrt{2} : \lambda_1, \lambda_2 \in \mathbb{Z}\}$).

The set of integral vectors \mathbb{Z}^n is a full-dimensional lattice in \mathbb{R}^n , generated by the unit vectors e_1, e_2, \ldots, e_n . But the same lattice can also be generated by the vectors $e_1 + e_2, e_2, e_3, \ldots, e_n$ (since the sum $\lambda_1 e_1 + \lambda_2 e_2$, where $\lambda_1, \lambda_2 \in \mathbb{Z}$, can be rewritten as $\lambda_1 (e_1 + e_2) + (\lambda_2 - \lambda_1) e_2$, and the coefficients remain integral; for the converse, we rewrite $\lambda_1 (e_1 + e_2) + \lambda_2 e_2$ as $\lambda_1 e_1 + (\lambda_1 + \lambda_2) e_2$). Thus, the basis of a lattice is not unique. However, all the bases of a given lattice are equivalent modulo "unimodular transformations". Recall that an integral square matrix U is called *unimodular* if $|\det(U)| = 1$. The following simple facts will be needed.

Lemma 1. Let U be a unimodular matrix. Then

- (a) the inverse U^{-1} is also unimodular;
- (b) x is an integral vector if and only if Ux is an integral vector.

Proof. Since U is an integral matrix, all cofactors of U are integers. It follows that all entries of U^{-1} are also integers, as $|\det(U)| = 1$. Finally, $UU^{-1} = I$ implies $\det(U) \det(U^{-1}) = 1$, whence $|\det(U^{-1})| = 1$. This proves part (a). It is obvious that if x is an integral vector, then Ux is also an integral vector. The converse follows now from part (a), since $x = U^{-1}(Ux)$.

Now, we can establish the connexion between different bases of the same lattice. For the sake of both completeness and consistency, in the following lemma we also consider general-form matrices of full row rank, where do not claim that the set $\Lambda(B)$ is a lattice— $\Lambda(B)$ is just the group generated by the columns of B, i.e., the set defined as in (1), where the vectors are not necessarily linearly independent.

Lemma 2. Let B and B' be matrices. If B = B'U for some unimodular matrix U, then $\Lambda(B) = \Lambda(B')$. Moreover, if B and B' have full column rank and $\Lambda(B) = \Lambda(B')$, then B = B'U for some unimodular matrix U.

Proof. Let *U* be a unimodular matrix and suppose that B = B'U. Then for every vector y = Bx with $x \in \mathbb{R}^n$, we have y = B'(Ux), and x is integral if and only if Ux is integral. This implies $\Lambda(B) = \Lambda(B')$.

If B and B' have full column rank and $\Lambda(B) = \Lambda(B')$, then $B \subseteq \Lambda(B')$, and therefore, B = B'V for some integral matrix V. Similarly, $B' \subseteq \Lambda(B)$, which implies that B' = BW for some integral matrix W. It follows that B = BWV, and since B has full column rank, WV = I. Particularly, $V = W^{-1}$ and $\det(V)\det(W) = 1$. But V and W are integral matrices, and the last equality is only possible when $|\det(W)| = |\det(V)| = 1$.

2 Hermite normal form

The following *elementary column operations* are particular unimodular transformations of a matrix $B = [b_1, b_2, ..., b_n]$:

- (1) swap two columns in $B: b_i \longleftrightarrow b_i \ (i \neq j);$
- (2) multiply a column by -1: $b_i \leftarrow (-b_i)$;
- (3) add an integer multiple of a column to another column: $b_i \leftarrow b_i + \alpha b_i$ $(i \neq j, \alpha \in \mathbb{Z})$.

We explicitly specify appropriate unimodular matrices for each of the elementary column operations. Thus, swapping columns b_i and b_j in matrix B is equivalent to multiplying B by the unimodular matrix $U = \begin{bmatrix} u_{kl} \end{bmatrix}$, which is obtained from the identity matrix by swapping its i-th and j-th columns. Precisely, $u_{kk} = 1$ for all $k \neq i, j, u_{ij} = u_{ji} = 1$, and $u_{kl} = 0$ otherwise. Multiplying a column b_i of matrix B by -1 is equivalent to multiplying B with the unimodular matrix $U = \begin{bmatrix} u_{kl} \end{bmatrix}$, which is obtained from the identity matrix by multiplying the i-th column by -1; hence, $u_{kk} = 1$ for all $k \neq i, u_{ii} = -1$, and $u_{kl} = 0$ otherwise. Lastly, adding α times column b_j to column b_i in matrix B is equivalent to multiplying B with the unimodular matrix U, which is obtained from the identity matrix by α times j-th column to the i-th column, i.e., $u_{kk} = 1$ for all $k, u_{ji} = \alpha$, and $u_{ij} = 0$ otherwise.

We say that a matrix B of full row rank is in *Hermite normal form* if it has the form $B = [H \mid 0]$, where $H = [h_{ij}]$ is a square matrix such that

- (1) $h_{ij} = 0$ for i < j (i.e., H is lower-triangular);
- (2) $0 \le h_{ij} < h_{ii}$ for i > j (i.e., H is non-negative and each row has a unique maximum entry, which is on the main diagonal)

Particularly, matrix H is non-singular. Now, we show that any matrix can be brought into Hermite normal form by applying an appropriate sequence of elementary column operations. Since the elementary column operations are actually unimodular transformations of a matrix, the group generated by the columns of the matrix is invariant under these operations; in other words, if we had transformed the matrix into a matrix in Hermite normal form, we also proved that this group can be generated by linearly independent vectors, and therefore, is a lattice.

Theorem 3 (Existence of Hermite normal form). *Each rational matrix of full row rank can be brought into Hermite normal form by a sequence of elementary column operations.*

Proof. Let B be a rational matrix of full row rank. Without loss of generality, we may assume that B is integral; otherwise, $B = \frac{1}{\delta}B'$, where δ is the least common multiple of all denominators in B, and we proceed with matrix B'. We describe an algorithm converting B into a matrix in Hermite normal form. This algorithm constructs a sequence of matrices B_1, B_2, \ldots , where

$$B_k = \begin{bmatrix} H_k & 0 \\ C_k & D_k \end{bmatrix},$$

where H_k is a $k \times k$ -matrix in Hermite normal form, and the matrix B_{k+1} is obtained from the matrix B_k as follows.

Let $d_1, d_2, \ldots, d_{n-k}$ be the entries in the first row of D_k . By permuting some columns and multiplying some columns by -1, we may assure that they all are non-negative. Moreover, there is at least one non-zero entry, since B has full row rank. If $d_i > d_j$ are two non-zero entries in the first row of D_k , we add $-\left\lfloor \frac{d_i}{d_j} \right\rfloor$ times the j-th column to the i-th column of D_k . All the entries in the first row of D_k remain non-negative but their total sum strictly decreases. (In fact, we execute the Euclidean algorithm to compute the greatest common divisor of d_i and d_j , and therefore, terminate if both d_i and d_j are integers.) Therefore, by repeating this procedure we end up with exactly one non-zero entry, say d, in the first row of D_k , which after swapping the columns is located in the first column. It remains to ensure that all entries in the first row of C_k are non-negative and smaller than d. To do so, we add $-\left\lfloor \frac{c_i}{d} \right\rfloor$ times the (k+1)-th column to the i-th column in B_k , for each $i=1,2,\ldots,k-1$ (clearly, this does not affect the entries of H_k).

Due to unimodularity of elementary column operations, we can derive the following corollary.

Corollary 3a. Let B be a matrix of full row rank. Then there is a unimodular matrix U such that the matrix BU is in Hermite normal form.

Corollary 3a implies that every rational lattice has a basis in Hermite normal form. Moreover, if B is a rational matrix of full row rank, then the group generated by B, $\Lambda(B)$, is a lattice. In the next section we state these facts in a slightly more general form.

In fact, the proof of Theorem 3 yields an algorithm to compute Hermite normal form of a matrix. But is this algorithm polynomial? Unfortunately, not yet. The problem is that the entries may grow exponentially during the execution of the algorithm (recall the Gaussian elmination method with cross-multiplication). Later, we shall consider this question once again and modify the algorithm, so that it runs in polynomial time.

3 Sublattices

As we mentioned before, Theorem 3 shows, as a side-effect, that any group generated by rational vectors is a lattice, i.e., it can be generated by linearly independent vectors. In this section, we state this result in a slightly more general form.

Let $\Lambda = \Lambda(B)$ be a full-dimensional lattice in \mathbb{R}^n . It follows directly from Lemma 2 that the value $|\det(B)| > 0$ is independent of the particular choice of a basis. Thus, we may define the *determinant* of lattice Λ as $\det(\Lambda) := |\det(B)|$.

Let $\Lambda' = \Lambda(B')$ be another full-dimensional lattice. If $\Lambda' \subseteq \Lambda$, we say that Λ' is a *sublattice* of Λ . In this case, B' = BV for some integral matrix V. The value

$$D(\Lambda, \Lambda') := |\det(V)| = \frac{|\det(B')|}{|\det(B)|} = \frac{\det(\Lambda')}{\det(\Lambda)}$$

is then a positive integer and is called the *index* of Λ' in Λ . In particular, if B' is an integral matrix, then $|\det(\Lambda')|$, the determinant of lattice Λ' , is the index of Λ' in \mathbb{Z}^n .

Lemma 4. Let Λ' be a sublattice of a lattice Λ (both Λ and Λ' are full-dimensional). Then

$$D\Lambda \subseteq \Lambda' \subseteq \Lambda$$
,

where D is the index of Λ' in Λ and $D\Lambda'$ denotes the scaled lattice $\Lambda(DB') = \{Dx : x \in \Lambda\}$.

Proof. The second inclusion being trivial, we prove that $D\Lambda \subseteq \Lambda$. Let B and B' be bases of Λ and Λ' , respectively. It is clear that DB is a basis of $D\Lambda$. Since $\Lambda' \subseteq \Lambda$, we have B' = BV for some integral matrix V and $D = |\det(V)| > 0$. But then $B = B'V^{-1}$, DV^{-1} is an integral matrix, and therefore, $DB \subseteq \Lambda'$. This implies $D\Lambda \subseteq \Lambda'$.

Theorem 5 (Bases in Hermite normal form). Let Λ' be a sublattice of Λ .

- (a) For every basis B of Λ , there is a unique basis B' of Λ' such that B' = BH, where H is a matrix in Hermite normal form.
- (b) For every basis B' of Λ' , there is a unique basis B of Λ such that B = B'H', where H' is a matrix in Hermite normal form.

Proof. Let B be a basis of lattice Λ and choose any basis B' of lattice Λ' . Since $\Lambda' \subseteq \Lambda$, we have B' = BV for some integral matrix V. By Corollary 3a, there is a unimodular matrix U such that H = VU is in Hermite normal form, whence B'U = BVU = BH. By Lemma 2, B'U is also a basis of Λ' and Part (a) is proved.

For Part (b), let B' be a basis of lattice Λ' and choose an arbitrary basis B of lattice Λ . By Lemma 4, we have $D\Lambda \subseteq \Lambda'$, where D is the index of B' in B, and therefore $B = \frac{1}{D}B'V$ for some integral matrix V. Again, there is a unimodular matrix U such that $H = \frac{1}{D}VU$ is in Hermite normal form. Hence, $BU = \frac{1}{D}B'VU = B'H$ is the required basis of B.

A particular case of Theorem 5 is that of *rational lattices*, i.e., lattices generated by rational vectors: they always have a basis in Hermite normal form.

Theorem 6. Let Λ be a full-dimensional lattice with basis $B \in \mathbb{R}^{n \times n}$ and let $B' = [b'_1, b'_2, ..., b'_k]$ be a matrix composed of some vectors $b'_1, b'_2, ..., b'_k \in \Lambda$ that span \mathbb{R}^n . Then the set group generated by B', $\Lambda(B')$, is a lattice.

Proof. Again, B' = BV for some integral matrix $V \in \mathbb{Z}^{n \times k}$. By Corollary 3a, there is a unimodular matrix U such that H = VU is in Hermite normal form. By Lemma 2, $\Lambda(B') = \Lambda(B'U)$ and B' = BVU = BH. But H is in Hermite normal form, and therefore, has only n non-zero columns. The same is therefore true for B'U, implying that $\Lambda(B'U)$ is a lattice.

For rational bases, this means that $\Lambda(B)$ is a lattice whenever B is a rational matrix.