PART 6 THE FUNDAMENTAL THEOREM OF ASSET PRICING

Complementary slackness

Recall LP Duality

Let $\min\{c^Tx \mid Ax = b, x \ge 0\}$ be an LP in standard form. If LP is feasible and bounded, then also the dual LP $\max\{b^Ty \mid A^Ty \le c\}$ is feasible and bounded and there exist optimal solutions x^* and y^* of the primal resp. dual with $c^Tx^* = b^Ty^*$

Complementary Slackness

Let x^* and y^* be feasible solutions of the primal and dual linear program. The following conditions are equivalent:

- 1. x^* and y^* are optimal solutions of primal and dual respectively.
- 2. $x^*(i) > 0 \Longrightarrow (c A^T y^*)(i) = 0$

Strict complementary slackness

If both primal and dual are feasible, then there exist optimal solutions x^* and y^* of the primal and dual respectively with

$$x^* + (c - A^T y^*) > 0.$$

Arbitrage

Arbitrage is trading strategy that:

- 1. has positive initial cash flow and no risk of loss later (Type A)
- 2. requires no initial cash input, has no risk of loss and has positive probability of making profits in the future (Type B)

Generalization of binomial setting

- Let $\omega_1, ..., \omega_m$ be finite set of possible states
- For securities S^i , i = 0, ..., n let $S^i_1(\omega_j)$ be price of security in state ω_j at time 1 and let S^i_o be price of security i at time 0
- ► S^0 is riskless security that pays interest rate $r \ge 0$ between time 0 and time 1; $S_0^0 = 1$ and $S_1^0(\omega_j) = R = (1+r)$ for j = 1, ..., m

Risk-neutral probability

A risk-neutral probability measure on the set $\Omega = \{\omega_1, ..., \omega_m\}$ is a vector $p_1, ..., p_m$ of positive numbers with $\sum_{j=1}^m p_j = 1$ and for every $S^i, i = 0, ..., n$ one has

$$S_0^i = \frac{1}{R} \sum_{i=1}^m p_j S_1^i(\omega_j) = \frac{1}{R} E[S_1^i].$$

Here $E[S_1^i]$ is the expected value of random variable S under probability distribution $(p_1, ..., p_m)$.

Fundamental theorem of asset pricing

First fundamental theorem of asset pricing

A risk-neutral probability measure exists if and only if there is no arbitrage

PART 6.1 ARBITRAGE DETECTION USING LINEAR PROGRAMMING

Scenario

- ▶ Portfolio of derivate securities (European call options) S^i , i = 1, ..., n of one security S is determined by non-negative vector $(x_1, ..., x_n)$
- Payoff of portfolio is $\Psi^x(S_1) = \sum_{i=1}^n \Psi_i(S_1) x_i$, where $\Psi_i(S_1) = \max\{(S_1 K_i), 0\}$, where K_i is strike price K_i (piecewise linear function with one breakpoint!)
- Cost of performing portfolio at time 0:

$$\sum_{i=1}^{n} S_0^i x_i.$$

Determine arbitrage possibility

- Negative cost of portfolio with nonnegative payoff (type A)
- Cost zero and positive payoff (type B)

Observation

Nonnegative payoff

Payoff is piecewise linear in S_1 with breakpoints $K_1, ..., K_n$. Payoff is nonnegative on $[0, \infty)$, if and only if nonnegative at 0 and at all breakpoints and right-derivative at K_n is nonnegative (assume $K_1 \le K_2 \le ... \le K_n$).

Formally:

$$\Psi^{x}(0) \ge 0$$
 $\Psi^{x}(K_{j}) \ge 0, j = 1, ..., n$
 $\Psi^{x}(K_{n} + 1) - \Psi^{x}(K_{n}) \ge 0.$

Linear program

$$\begin{aligned} \min \sum_{i=1}^{n} S_{0}^{i} x_{i} \\ \sum_{i=1}^{n} \Psi_{i}(0) x_{i} & \geq 0 \\ \sum_{i=1}^{n} \Psi_{i}(K_{j}) x_{i} & \geq 0, j = 1, \dots, n \\ \sum_{i=1}^{n} (\Psi_{i}(K_{n} + 1) - \Psi_{i}(K_{n})) x_{i} & \geq 0. \end{aligned}$$

Proposition

There is no type A arbitrage if and only if optimal objective value of LP is at least 0

Proposition

Suppose that there is no type A arbitrage. Then, there is no type B arbitrage if and only if the dual of LP has strictly feasible solution.

Constraint matrix

- $\Psi_i(K_i) = \max\{K_i K_i, 0\}$
- Constraint matrix A of LP has the form

$$A = \begin{pmatrix} K_2 - K_1 & 0 & 0 & \cdots & 0 \\ K_3 - K_1 & K_3 - K_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ K_n - K_1 & K_n - K_2 & K_n - K_3 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

Theorem

Let $K_1 < K_2 < \cdots < K_n$ denote strike prices of European call options on the same underlying security with same maturity. There are no arbitrage opportunities if and only if prices S_0^i satisfy

- 1. $S_0^i > 0, i = 1, ..., n$
- 2. $S_0^i > S_0^{i+1}$, i = 1, ..., n-1
- 3. $C(K_i) := S_0^i$ defined on $\{K_1, \dots, K_n\}$ is strictly convex function