Strong relaxations for discrete optimization problems

Yuri Faenza

Affine independence and dimension

Let $S \subseteq \mathbb{R}^n$.

Affine hull of S:
$$aff(S) = \{x = \sum_{s_i \in S} \alpha_i s_i : \sum_i \alpha_i = 1\}.$$

Affine independence and dimension

Let $S \subseteq \mathbb{R}^n$.

Affine hull of S: $aff(S) = \{x = \sum_{s_i \in S} \alpha_i s_i : \sum_i \alpha_i = 1\}.$

S is affinely independent if $x \notin aff(S \setminus x)$ for all $x \in S$.

Affine independence and dimension

Let $S \subseteq \mathbb{R}^n$.

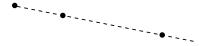
Affine hull of S: aff(S) = $\{x = \sum_{s_i \in S} \alpha_i s_i : \sum_i \alpha_i = 1\}.$

S is affinely independent if $x \notin aff(S \setminus x)$ for all $x \in S$.

 $dim(S) = max\{|C| : C \subseteq S \text{ and } C \text{ is an affinely independent set}\} - 1.$

Obs. $\{v^1, \dots, v^k\}$ affinely indep $\Leftrightarrow \{v^k - v^1, \dots, v^2 - v^1\}$ lin indep.

 $dim(S) \in \{-1, \ldots, n\}.$

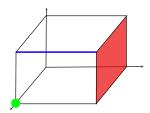


Faces of a polyhedron

Let $cx \leq \delta$ be a valid inequality for a polyhedron $P \subseteq \mathbb{R}^n$.

Then $F = \{x \in P : cx = \delta\}$ if a face of P and $\{x : cx = \delta\}$ its supporting hyperplane.

P and \emptyset are both (improper) faces.

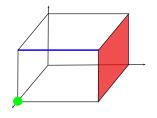


Faces of a polyhedron

Let $cx \leq \delta$ be a valid inequality for a polyhedron $P \subseteq \mathbb{R}^n$.

Then $F = \{x \in P : cx = \delta\}$ if a face of P and $\{x : cx = \delta\}$ its supporting hyperplane.

P and \emptyset are both (improper) faces.



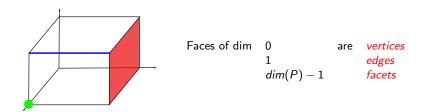
Faces of dim 0 are vertices 1 edges dim(P) - 1 facets

Faces of a polyhedron

Let $cx \leq \delta$ be a valid inequality for a polyhedron $P \subseteq \mathbb{R}^n$.

Then $F = \{x \in P : cx = \delta\}$ if a face of P and $\{x : cx = \delta\}$ its supporting hyperplane.

P and \emptyset are both (improper) faces.

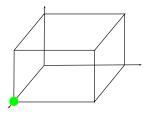


A polyhedron is pointed if it has at least a vertex.

Characterization of vertices

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a pointed polyhedron and $\bar{x} \in P$. TFAE:

- $ightharpoonup \bar{x}$ is a vertex of P.
- ▶ \bar{x} satisfies at equality *n* linearly independent inequalities from $Ax \leq b$.
- $ightharpoonup \bar{x}$ is not a convex combination of any two other points in P.

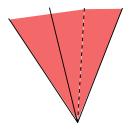


Characterization of extreme rays

A ray of a cone C is a set $cone(r) \subseteq C$, for some $r \in \mathbb{R}$. Edges of a cone are called extreme rays.

Let $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$ be a pointed cone and \bar{r} a ray of C. TFAE:

- $ightharpoonup \overline{r}$ is an extreme ray of P.
- ▶ \bar{r} satisfies at equality n-1 linearly independent inequalities from $Ax \leq 0$.
- ullet $ar{x}$ is not a conic combination of any two other distinct rays in C.



Characterization of faces

Let
$$P = \{x \in \mathbb{R}^n : a^i x \leq b_i, i \in [m]\} \neq \emptyset$$
.

Let $I \subseteq [m]$. The set

$$F_I = \{x \in \mathbb{R}^n : a^i x = b_i \text{ for } i \in I, a^i x \leq b_i \text{ for } i \in [m] \setminus I\}$$

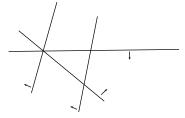
is a face of P.

Conversely, if F is a non-empty face of P, then $F = F_I$ for some $I \subseteq [m]$.

Implicit equations

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$.

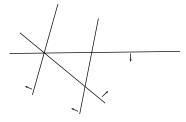
An inequality $ax \leq \beta$ from $Ax \leq b$ is an implicit equation if $ax = \beta$ for all $x \in P$.



Implicit equations

Let
$$P = \{x \in \mathbb{R}^n : Ax \leq b\}.$$

An inequality $ax \leq \beta$ from $Ax \leq b$ is an implicit equation if $ax = \beta$ for all $x \in P$.



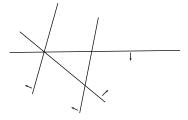
The subsystem of implicit equations is denoted by $A^-x \le b^-$.

The system of remaining inequalities is denoted by $A^{<}x \leq b^{<}$.

Implicit equations

Let
$$P = \{x \in \mathbb{R}^n : Ax \leq b\}.$$

An inequality $ax \le \beta$ from $Ax \le b$ is an implicit equation if $ax = \beta$ for all $x \in P$.



The subsystem of implicit equations is denoted by $A^{-}x \leq b^{-}$.

The system of remaining inequalities is denoted by $A^{<}x \leq b^{<}$.

Obs. There exists $x \in P$ such that $A^{<}x < b^{<}$.

Proof. Take the middle point of points of P, each satisfying strictly one of the inequalities from $A^{<}x \leq b^{<}$.

