Prof. Friedrich Eisenbrand

Location: MA A3 31

Question session: 11.11.09

Discussion: 18.11.09

Exercises

Optimization Methods in Finance

Fall 2009

Sheet 4

Note: This is just <u>one</u> way, a solution could look like. We do not guarantee correctness. It is your task to find and report mistakes.

Exercise 4.1

Let $Q \in \mathbb{R}^{n \times n}$ be a positive-definite matrix (i.e. $\forall x \neq \mathbf{0} : x^T Q x > 0$) and $c \in \mathbb{R}^n$ be a vector. Then $\min\{x^T Q x + c^T x \mid x \in \mathbb{R}^n\}$ is bounded, i.e. there exists an M such that $x^T Q x + c^T x \geq -M$ for all $x \in \mathbb{R}^n$.

Solution:

Let $B = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$ be the unit ball ($||\cdot||$ gives the Euclidean norm). Define $\delta := \inf_{x \in B} \{x^T Q x\}$. Since B is bounded and closed, B is also compact. Furthermore $x^T Q x$ is a continous function. Then the infimum must be attained at a point, say y, i.e. ||y|| = 1 and $\delta = y^T Q y > 0$. Furthermore, let $c_{\max} := \max\{|c_i| \mid i = 1, \dots, n\}$. Let $x \neq \mathbf{0}$, then

$$x^{T}Qx + c^{T}x \geq \|x\|^{2} \underbrace{\frac{x}{\|x\|}^{T}Q\frac{x}{\|x\|}}_{\geq \delta} + \|x\|\underbrace{c^{T}\frac{x}{\|x\|}}_{\geq -c_{\max}}$$

$$\geq \|x\|^{2} \cdot \delta - \|x\|c_{\max}$$

$$\geq \delta \cdot \left(\|x\|^{2} - \|x\|\frac{c_{\max}}{\delta}\right)$$

$$= \delta \cdot \left(\|x\|^{2} - 2 \cdot \frac{1}{2}\frac{c_{\max}}{\delta} + \left(\frac{c_{\max}}{2\delta}\right)^{2}\right) - \frac{c_{\max}^{2}}{4\delta}$$

$$= \underbrace{\delta \cdot \left(\|x\| - \frac{c_{\max}}{2\delta}\right)^{2} - \frac{c_{\max}^{2}}{4\delta}}_{\geq 0}$$

$$\geq -\underbrace{c_{\max}^{2}}_{\leq M}$$

since $\frac{x}{\|x\|} \in B$.

Exercise 4.2

Let $P \subseteq \mathbb{R}^n$ be a polytope, Q be a symmetric, positive semidefinite matrix, $f : \mathbb{R}^n \to \mathbb{R}$ with $f(x) := x^T Q x$, $x^* = \operatorname{argmin} \{ f(x) \mid x \in P \}$. Define

$$C := \max \{ (x - y)^T Q(x' - y') \mid x, y, x', y' \in P \cup \{\mathbf{0}\} \}^1$$

and $h(x) = \frac{f(x) - f(x^*)}{4C}$. Prove that $h(x^{(0)}) \le 1/4$, where $x^{(0)}$ is an arbitrary point in P.

Solution:

One has

$$f(x^{(0)}) - f(x^*) = x^{(0)}^T Q x^{(0)} - \underbrace{x^{*T} Q x^*}_{> 0} \le (x^{(0)} - \mathbf{0})^T Q (x^{(0)} - \mathbf{0}) \le C.$$

Exercise 4.3

Let $P \subseteq [-M,M]^n$ be a polytope and $Q \in [-M,M]^{n \times n}$ be a symmetric, positive semidefinite matrix. Give a bound² (depending on n,M,ε) on the number of iterations k, that the Frank-Wolfe algorithm needs, to reach a solution $x^{(k)}$ such that $f(x^{(k)}) - f(x^*) \le \varepsilon$ (with $f(x) := x^T Qx$).

Solution:

First of all

$$C = \max\{(x - y)^T Q(x' - y') \mid x, y, x', y' \in P \cup \{\mathbf{0}\}\} \le \sum_{i=1}^n \sum_{j=1}^n \underbrace{(x_i - y_i)}_{<2M} \underbrace{Q_{ij}}_{$$

Then after $k := \lceil 16n^2M^3/\varepsilon \rceil$ many iterations we have

$$\frac{f(x^{(k)}) - f(x^*)}{4C} \le \frac{1}{k+3}$$

hence

$$f(x^{(k)}) - f(x^*) \le \frac{4C}{k+3} \le \frac{16n^2M^3}{k+3} \le \varepsilon$$

Exercise 4.4

Let $P \subseteq \mathbb{R}^n$ be a polytope, Q be a symmetric, positive semidefinite matrix, $f : \mathbb{R}^n \to \mathbb{R}$ with $f(x) := x^T Q x$, $w(y) := \min_{v \in P} \{ \nabla f(y)^T (v - y) + f(y) \}$,

$$C := \max \{ (x - y)^T Q(x' - y') \mid x, y, x', y' \in P \cup \{\mathbf{0}\} \}$$

Let $\lambda^* = \frac{f(x^{(k)}) - w(x^{(k)})}{2C}$ minimizing $g(\lambda) = f(x^{(k)} + \lambda(y^{(k)} - x^{(k)}))$. Prove that $\lambda^* \in [0, 1]$.

¹We define *C* here differently then in the lecture to avoid some technical difficulties

²the bound does not need to be the best possible one

Solution:

Recall that $\nabla f(x) = 2x^T Q = 2Qx$. Hence

$$\begin{split} f(x^{(k)}) - w(x^{(k)}) &= f(x^{(k)}) - \min_{v \in P} \{ \nabla f(x^{(k)})^T (v - x^{(k)}) + f(x^{(k)}) \} \\ &= \max_{v \in P} \nabla f(x^{(k)}) (x^{(k)} - v) \\ &= 2 \max_{v \in P} (x^{(k)} - \mathbf{0})^T Q(x^{(k)} - v) \\ &< 2C \end{split}$$

Exercise 4.5

Prove that

$$\frac{n}{n+1} \left(\frac{n^2}{n^2 - 1} \right)^{(n-1)/2} \le e^{-\frac{1}{2(n+1)}}$$

for all $n \ge 2$.

Solution:

Recall that $1 + x \le e^x$ for all $x \in \mathbb{R}$. Hence

$$\frac{n}{n+1} \left(\frac{n^2}{n^2 - 1} \right)^{(n-1)/2} = \underbrace{\left(1 - \frac{1}{n+1} \right)}_{\leq e^{-1/(n+1)}} \left(\underbrace{1 + \frac{1}{n^2 - 1}}_{\leq e^{1/(n^2 - 1)}} \right)^{(n-1)/2}$$

$$\leq \exp\left(-\frac{1}{n+1} + \frac{n-1}{2(n-1)(n+1)} \right)$$

$$= \exp\left(-\frac{1}{n+1} + \frac{1}{2(n+1)} \right)$$

$$= \exp\left(-\frac{1}{2(n+1)} \right)$$